12 resultados para NNC
Resumo:
A Internet, conforme a conhecemos, foi projetada com base na pilha de protocolos TCP/IP, que foi desenvolvida nos anos 60 e 70 utilizando um paradigma centrado nos endereços individuais de cada máquina (denominado host-centric). Este paradigma foi extremamente bem-sucedido em interligar máquinas através de encaminhamento baseado no endereço IP. Estudos recentes demonstram que, parte significativa do tráfego atual da Internet centra-se na transferência de conteúdos, em vez das tradicionais aplicações de rede, conforme foi originalmente concebido. Surgiram então novos modelos de comunicação, entre eles, protocolos de rede ponto-a-ponto, onde cada máquina da rede pode efetuar distribuição de conteúdo (denominadas de redes peer-to-peer), para melhorar a distribuição e a troca de conteúdos na Internet. Por conseguinte, nos últimos anos o paradigma host-centric começou a ser posto em causa e apareceu uma nova abordagem de Redes Centradas na Informação (ICN - information-centric networking). Tendo em conta que a Internet, hoje em dia, basicamente é uma rede de transferência de conteúdos e informações, porque não centrar a sua evolução neste sentido, ao invés de comunicações host-to-host? O paradigma de Rede Centrada no Conteúdo (CCN - Content Centric Networking) simplifica a solução de determinados problemas de segurança relacionados com a arquitetura TCP/IP e é uma das principais propostas da nova abordagem de Redes Centradas na Informação. Um dos principais problemas do modelo TCP/IP é a proteção do conteúdo. Atualmente, para garantirmos a autenticidade e a integridade dos dados partilhados na rede, é necessário garantir a segurança do repositório e do caminho que os dados devem percorrer até ao seu destino final. No entanto, a contínua ineficácia perante os ataques de negação de serviço praticados na Internet, sugere a necessidade de que seja a própria infraestrutura da rede a fornecer mecanismos para os mitigar. Um dos principais pilares do paradigma de comunicação da CCN é focalizar-se no próprio conteúdo e não na sua localização física. Desde o seu aparecimento em 2009 e como consequência da evolução e adaptação a sua designação mudou atualmente para Redes de Conteúdos com Nome (NNC – Named Network Content). Nesta dissertação, efetuaremos um estudo de uma visão geral da arquitetura CCN, apresentando as suas principais características, quais os componentes que a compõem e como os seus mecanismos mitigam os tradicionais problemas de comunicação e de segurança. Serão efetuadas experiências com o CCNx, que é um protótipo composto por um conjunto de funcionalidades e ferramentas, que possibilitam a implementação deste paradigma. O objetivo é analisar criticamente algumas das propostas existentes, determinar oportunidades, desafios e perspectivas para investigação futura.
Resumo:
This article presents an experimental study about the classification ability of several classifiers for multi-classclassification of cannabis seedlings. As the cultivation of drug type cannabis is forbidden in Switzerland lawenforcement authorities regularly ask forensic laboratories to determinate the chemotype of a seized cannabisplant and then to conclude if the plantation is legal or not. This classification is mainly performed when theplant is mature as required by the EU official protocol and then the classification of cannabis seedlings is a timeconsuming and costly procedure. A previous study made by the authors has investigated this problematic [1]and showed that it is possible to differentiate between drug type (illegal) and fibre type (legal) cannabis at anearly stage of growth using gas chromatography interfaced with mass spectrometry (GC-MS) based on therelative proportions of eight major leaf compounds. The aims of the present work are on one hand to continueformer work and to optimize the methodology for the discrimination of drug- and fibre type cannabisdeveloped in the previous study and on the other hand to investigate the possibility to predict illegal cannabisvarieties. Seven classifiers for differentiating between cannabis seedlings are evaluated in this paper, namelyLinear Discriminant Analysis (LDA), Partial Least Squares Discriminant Analysis (PLS-DA), Nearest NeighbourClassification (NNC), Learning Vector Quantization (LVQ), Radial Basis Function Support Vector Machines(RBF SVMs), Random Forest (RF) and Artificial Neural Networks (ANN). The performance of each method wasassessed using the same analytical dataset that consists of 861 samples split into drug- and fibre type cannabiswith drug type cannabis being made up of 12 varieties (i.e. 12 classes). The results show that linear classifiersare not able to manage the distribution of classes in which some overlap areas exist for both classificationproblems. Unlike linear classifiers, NNC and RBF SVMs best differentiate cannabis samples both for 2-class and12-class classifications with average classification results up to 99% and 98%, respectively. Furthermore, RBFSVMs correctly classified into drug type cannabis the independent validation set, which consists of cannabisplants coming from police seizures. In forensic case work this study shows that the discrimination betweencannabis samples at an early stage of growth is possible with fairly high classification performance fordiscriminating between cannabis chemotypes or between drug type cannabis varieties.
Resumo:
The structure of three-body halo nuclei formed by two neutrons and a core (nnc) is studied using zero-range interactions. The halo wave function can be completely parameterized only by the s-wave scattering lengths and two-neutron separation energy. The sizes and the neutron-neutron correlation function of Li-11 and Be-14 are calculated and compared to experimental data. A general classification scheme for three-body halos with two identical particles is discussed as well as the critical conditions to allow excited Efimov states.
Resumo:
Mode of access: Internet.
Resumo:
Avery Classics (Offsite) copy: With markings.
Resumo:
Translation of Chirurgia magna.
Resumo:
Avery Classics (Offsite) copy: Signed "Josephine Doughine" and bound in cover with imprint "Josephie Dougherty"; stamped "Whitlock."
Resumo:
Avery Classics (Offsite) copy: Seymour B. Durst Old York Library Collection, Avery Architectural & Fine Arts Library, Columbia University.
Resumo:
Avery Classics (Offsite) copy: Inscribed by the author to Peter Stuyvesant.
Resumo:
On reel with Schedler, Armin. De locis Horatianis ... [1846]
Resumo:
Avery Classics (Offsite) copy: Seymour B. Durst Old York Library Collection, Avery Architectural & Fine Arts Library, Columbia University.
Resumo:
Avery Classics (Offsite) copy: Markings.