979 resultados para NMR (119Sn) spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The syntheses of the asymmetrically substituted tetraorganodistannoxanes [t-Bu2(X)SnOSn(Y)(CH2SiMe3)212 (1, X = Y = OH; 2, X = Cl, Y = OH; 3, X = Y = Cl) are reported and their structures in solution and in the solid state are characterized by multinuclear NMR spectroscopy and single crystal X-ray analyses. In toluene, the tetrahydroxy-substituted derivative 1 is in equilibrium with the organotin oxides cyclo-[t-Bu2Sn{OSn(CH2SiMe3)2}2O] (4), cyclo[(Me3SiCH2)2Sn(OSnt-Bu2)2O] (5), and cyclo-(t-Bu2SnO)3, and some additional, undefined species containing pentacoordinated tin atoms. In contrast, the dihydroxydichloro-substituted derivative 2 is inert in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diacetylenic phospholipid, 1,2 bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC), forms helices and tubules in addition to liposomes. The diacetylenic moiety responsible for the transformation is probed by 2-D NMR correlated spectroscopy. Chemical shift assignments and the analysis of 2D-COSY measurements were done on the lipid in chloroform-d solution. Based on this analysis, a model for the lipid is proposed. The geometry of the headgroup, glycerol backbone and acyl chains up to three methylenes from glycerol backbone [-(CH2)(3)-] is similar to that of dipalmitoyl phosphatidylcholine. The estimated torsional angle for methylene groups adjacent to diacetylenic moieties suggested an overall tilt of the diacetylenic lipid molecule from the bilayer axis of 25-30 degrees. This tilt could be negative or positive depending on the handedness of the resultant microstructures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The self-assembly of proteins and peptides into b-sheet-rich amyloid fibers is a process that has gained notoriety because of its association with human diseases and disorders. Spontaneous self-assembly of peptides into nonfibrillar supramolecular structures can also provide a versatile and convenient mechanism for the bottom-up design of biocompatible materials with functional properties favoring a wide range of practical applications.[1] One subset of these fascinating and potentially useful nanoscale constructions are the peptide nanotubes, elongated cylindrical structures with a hollow center bounded by a thin wall of peptide molecules.[2] A formidable challenge in optimizing and harnessing the properties of nanotube assemblies is to gain atomistic insight into their architecture, and to elucidate precisely how the tubular morphology is constructed from the peptide building blocks. Some of these fine details have been elucidated recently with the use of magic-angle-spinning (MAS) solidstate NMR (SSNMR) spectroscopy.[3] MAS SSNMR measurements of chemical shifts and through-space interatomic distances provide constraints on peptide conformation (e.g., b-strands and turns) and quaternary packing. We describe here a new application of a straightforward SSNMR technique which, when combined with FTIR spectroscopy, reports quantitatively on the orientation of the peptide molecules within the nanotube structure, thereby providing an additional structural constraint not accessible to MAS SSNMR.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrical conductivity and H-1 Nuclear Magnetic Resonance (NMR) techniques were used to investigate the ion-exchanged layered lead-niobate perovskite HPb2Nb3O10. nH(2)O, over the temperature range 90-350 K. Compounds were synthesized by the sol-gel method and calcinated at 650 degreesC. Analysis of the NMR data gives activation energies for the proton motion in the range 0.14-0.40 eV, which are dependent on the water content. The frequency and temperature dependencies of the proton spin-lattice relaxation times show that the character of the motion of the: water molecules is essentially two-dimensional, reflecting the layered structure of the material. The H-1 line-narrowing transition and the single spin-lattice relaxation rate maximum, observed in the hydrated compounds, are consistent with a Grotthuss-like mechanism for the proton diffusion. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Five new organotin(IV) complexes of composition [Bz2SnL1]n (1), [Bz3SnL1HH2O] (2), [Me2SnL2H2O] (3), [Me2SnL3] (4) and [Bz3SnL3H]n (5) (where L1 = (2S)-2-([(E)-(4-hydroxypentan-2-ylidene)]amino)-4-methylpentanoate, L2 = (rac)-2-([(E)-1-(2-hydroxyphenyl)methylidene]amino)-4-methylpentanoate and L3 = (2S)- or (rac)-2-([(E)-1-(2-hydroxyphenyl)ethylidene]amino)-4-methylpentanoate) were synthesized and characterized using 1H NMR, 13C NMR, 119Sn NMR and infrared spectroscopic techniques. The crystal structure of 2 reveals a distorted trigonal-bipyramidal geometry around the tin atom where the oxygen atoms of the carboxylate ligand and a water ligand occupy the axial positions, while the three benzyl ligands are located at the equatorial positions. On the other hand, the analogous derivative of enantiopure L3H (5) consists of polymeric chains, in which the ligand-bridged tin atoms adopt the same trans-Bz3SnO2 trigonal-bipyramidal configuration and are now coordinated to a phenolic oxygen atom instead of H2O. In 2, the OH hydrogen of the ketoimine substituent has moved to the nearby nitrogen atom while in the salicylidene derivative 5, the OH is located almost midway between the phenolic oxygen atom and the nitrogen atom of the C=N group. For the dibenzyltin derivative 1, a polymeric chain structure is observed as a result of a long intermolecular SnO bond involving the exocyclic carbonyl oxygen atom from the tridentate ligand of a neighbouring tin-complex unit. The tin atom in this complex has distorted octahedral coordination geometry. In contrast, the racemic dimethyltin(IV) complexes 3 and 4 display discrete monomeric structures with a distorted octahedral- and trigonal-bipyramidal geometry, respectively. The structures show that the coordination mode of the Schiff base ligand depends primarily on the number of bulky benzyl ligands (R) at the tin atom, as indeed found in the structures of related complexes where R = phenyl. With three bulky R groups, the tridentate chelating O,N,O coordination mode is preferred, whereas with fewer or less bulky R ligands, only the carboxylate and hydroxy groups are involved, which leads to polymers. Larvicidal efficacies of two of the new tribenzyltin(IV) complexes (2 and 5) were assessed on the second larval instar of Anopheles stephensi mosquito larvae and compared with two triphenyltin(IV) analogues, [Ph3SnL1H]n and [Ph3SnL3H]n. The results demonstrate that the compounds containing Sn-Ph ligands are more effective than those with Sn-Bz ligands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The potato virus A (PVA) genome linked protein (VPg) is a multifunctional protein that takes part in vital infection cycle events such as replication and movement of the virus from cell to cell. VPg is attached to the 5´ end of the genome and is carried in the tip structure of the filamentous virus particle. VPg is also the last protein to be cleaved from the polyprotein. VPg interacts with several viral and host proteins and is phosphorylated at several positions. These features indicate a central role in virus epidemiology and a requirement for an efficient but flexible mechanism for switching between different functions. -- This study examines some of the key VPg functions in more detail. Mutations in the positively charged region from Ala38 to Lys44 affected the NTP binding, uridylylation, and in vitro translation inhibition activities of VPg, whereas in vivo translation inhibition was not affected. Some of the data generated in this study implicated the structural flexibility of the protein in functional activities. VPg lacks a rigid structure, which could allow it to adapt conformationally to different functions as needed. A major finding of this study is that PVA VPg belongs to the class of ´intrinsically disordered proteins´ (IDPs). IDPs are a novel protein class that has helped to explain the observed lack of structure. The existence of IDPs clearly shows that proteins can be functional and adapt a native fold without a rigid structure. Evidence for the intrinsic disorder of VPg was provided by CD spectroscopy, NMR, fluorescence spectroscopy, bioinformatic analysis, and limited proteolytic digestion. The structure of VPg resembles that of a molten globule-type protein and has a hydrophobic core domain. Approximately 50% of the protein is disordered and an α-helical stabilization of these regions has been hypothesized. Surprisingly, VPg structure was stabilized in the presence of anionic lipid vesicles. The stabilization was accompanied by a change in VPg structure and major morphological modifications of the vesicles, including a pronounced increase in the size and appearance of pore or plaque like formations on the vesicle surface. The most likely scenario seems to be an α-helical stabilization of VPg which induces formation of a pore or channel-like structure on the vesicle surface. The size increase is probably due to fusion or swelling of the vesicles. The latter hypothesis is supported by the evident disruption of the vesicles after prolonged incubation with VPg. A model describing the results is presented and discussed in relation to other known properties of the protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

9-Anthryl and 1-pyrenyl terpyridines (1 and 2, respectively), key precursors for the design of novel fluorescent sensors have been synthesized and characterized by H-1 NMR, mass spectroscopy and X-ray crystallography. Twisted molecular conformations for each 1 and 2 were observed in their single crystal structures. Energy minimization calculations for the 1 and 2 using the semi-empirical AM1 method show that the 'twisted' conformation is intrinsic to these systems. We observe interconnected networks of edge-to-face CH...pi interactions, which appear to be cooperative in nature, in each of the crystal structures. The two twisted molecules, although having differently shaped polyaromatic hydrocarbon substituents, show similar patterns of edge-to-face CH...pi interactions.The presently described systems comprise of two aromatic surfaces that are almost orthogonal to each other. This twisted or orthogonal nature of the molecules leads to the formation of interesting multi-directional ladder like supramolecular organizations. A combination of edge-to-face and face-to-face packing modes helps to stabilize these motifs. The ladder like architecture in 1 is helical in nature. (C) 2002 Published by Elsevier Science B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nesse estudo, foram preparadas bases poliméricas derivadas de 2,6-dimetilpiridinas e tereftaladeído utilizando a 2,4,6-trimetilpiridina como agente de reticulação. As resinas foram sintetizadas sob aquecimento convencional e purificadas por precipitação em metanol, apresentando rendimentos variando de 59 a 95%. Os copolímeros produzidos foram caracterizados por análise termogravimétrica (TGA), ressonância nuclear magnética de núcleo de hidrogênio (RMN-1H) e espectroscopia na região do infravermelho com técnica de ATR (FTIR - ATR), além de sua atividade básica. A capacidade catalítica do material produzido foi avaliada em reações nitroaldólicas, do tipo Henry, tanto em aquecimento convencional quanto com o uso de reator de micro-ondas. Não sendo observada atividade catalítica significativa para as resinas testadas, nestas reações. O material polimérico produzido também foi testado como suporte para cobre na catálise de reações de cicloadição heterodipolar do tipo [3+2] com benzilazida e propiolato de etila, para a formação de triazóis, processadas em reator de micro-ondas e sob aquecimento convencional. A reação mostrou-se regiosseletiva e processos de reciclo do catalisador se mostrou eficiente em reações consecutivas

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Five, novel, meso-tetra[4-(3,4,5-trialkoxybenzoate)phenyl]porphyrins and their metal complexes were synthesized and their molecular structures were confirmed by H-1 NMR, FTIR spectroscopy and elemental analysis. Mesomorphic studies using DSC, polarizing optical microscope and X-ray diffraction revealed that all compounds exhibited thermotropic columnar mesophases over a wide mesophase temperature range and low liquid crystalline-crystal line transition temperature. (c) 2007 Elsevier Ltd. All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel series of compounds with different counter anions, i.e. 1-{[4-(4-nitrophenylazo)phenyloxy]}alkyl-3-methyl-1H-imidazol-3-ium bromide salts (C-n , n=3, 6, 10) and tetrafluoroborate salts (D-n , n=3, 6, 10), were synthesised by the incorporation of an imidazolium group into paraffin side chain-terminated 4-nitroazobenzene derivatives. Their chemical structures were determined by H-1 NMR, C-13 NMR, UV spectroscopy and elemental analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New aromatic diamines [(1) and (2)] containing polycycloalkane structures between two benzene rings were synthesized by HCl-catalyzed condensation reaction of aniline hydrochloride and corresponding polycycloalkanone derivatives. The structures of diamines were identified by H-1-NMR, C-13-NMR, FTIR spectroscopy, and elemental analysis. The polyimides were synthesized from the obtained diamines with various aromatic dianhydrides by one-step polymerization in m-cresol. The inherent viscosities of the resulting polyimides were in the range of 0.34-1.02 dL/g. The polyimides showed good thermal stabilities and solubility. All the polymers were readily soluble in N-methyl-2-pyrrolidone, m-cresol, tetrachloroethane, etc. Some of them were soluble even in chloroform at room temperature. The glass transition temperatures were observed in the range of 323-363 degrees C, and all of the polymers were stable up to 400 degrees C under nitrogen atmosphere. (C) 1999 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACT: p-Phenylenediamine was chemically attached to low molecular weight chlorinated paraffin wax. The polymer-bound p-phenylenediamine was characterized by vapor-phase osmometry (VPO), proton magnetic resonance spectroscopy ('H-NMR), infrared spectroscopy (IR), and thermogravimetric analysis (TGA). The efficiency and permanence of the polymer-bound p-phenylenediamine as an antioxidant was compared with a conventional amine-type antioxidant in natural rubber vulcanizates. The vulcanizates showed improved aging resistance in comparison to vulcanizates containing a conventional antioxidant. The presence of liquid polymer-bound p-phenylenediamine also reduces the amount of the plasticizer required for compounding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work report results from proton nuclear magnetic resonance (NMR), continuous-wave (CW-EPR) and pulsed electron paramagnetic resonance (P-EPR) and complex impedance spectroscopy of gelatin-based polymer gel electrolytes containing acetic acid. cross-linked with formaldehyde and plasticized with glycerol. Ionic conductivity of 2 x 10(-5) S/cm was obtained at room temperature for samples prepared with 33 wt% of acetic acid. Proton ((1)H) line shapes and spin-lattice relaxation times were measured as a function of temperature. The NMR results show that the proton mobility is dependent on acetic acid content in the plasticized polymer gel electrolytes. The CW-EPR spectra, which were carried out in samples doped with copper perchlorate, indicate the presence of the paramagnetic Cu(2+) ions in axially distorted sites. The P-EPR technique, known as electron spin echo envelope modulation (ESEEM), was employed to show the involvement of both, hydrogen and nitrogen atoms, in the copper complexation of the gel electrolyte. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The triruthenium carboxylate cluster [Ru(3)O(OAc)(6)(py)(2)(bpp)](+) (OAc = acetate) containing the bridging 1,3-bis(4-pyridyl)propane (bpp) ligand, and its dimeric species [{Ru(3)O(OAc)(6)(py(2))}(2)(mu-bpp)](2+) were synthesized in order to investigate their inclusion compounds with beta-cyclodextrin (beta-CD). Characterization of the complexes was carried out based on spectroscopic, electrochemical and spectroelectrochemical techniques, while the formation of inclusion complexes was evaluated using (1)H NMR/NOESY spectroscopy. Since bpp is a flexible ligand, a DFT study was carried out in order to characterize its conformational isomers and their possible role in the host-guest chemistry with beta-CD. Instead of observing the formation of inclusion compounds with different stoichiometries, we observed the formation of 1:1 bpp/beta-CD compounds in which the bpp ligand assumes different conformations. The assembly of polymetallic rotaxane species was successfully demonstrated by monitoring the (1)H NMR spectra of the monomeric cluster species in the presence of aquapentacyanoferrate(II) ions and beta-CD.