463 resultados para NGC-4649 M60
Resumo:
This paper presents further results from our spectroscopic study of the globular cluster (GC) system of the group elliptical NGC 3923. From observations made with the GMOS instrument on the Gemini South Telescope, an additional 50 GC and ultra-compact dwarf (UCD) candidates have been spectroscopically confirmed as members of the NGC 3923 system. When the recessional velocities of these GCs are combined with the 29 GC velocities reported previously, a total sample of 79 GC/UCD velocities is produced. This sample extends to over 6 arcmin (>6 R-e similar to 30 kpc) from the centre of NGC 3923 and is used to study the dynamics of the GC system and the dark matter content of NGC 3923. It is found that the GC system of NGC 3923 displays no appreciable rotation, and that the projected velocity dispersion is constant with radius within the uncertainties. The velocity dispersion profiles of the integrated light and GC system of NGC 3923 are indistinguishable over the region in which they overlap. We find some evidence that the diffuse light and GCs of NGC 3923 have radially biased orbits within similar to 130 arcsec. The application of axisymmetric orbit-based models to the GC and integrated light velocity dispersion profiles demonstrates that a significant increase in the mass-to-light ratio (from M/L-V = 8 to 26) at large galactocentric radii is required to explain this observation. We therefore confirm the presence of a dark matter halo in NGC 3923. We find that dark matter comprises 17.5(-4.5)(+7.3) per cent of the mass within 1 R-e, 41.2(-10.6)(+18.2) per cent within 2 R-e and 75.6(-16.8)(+15.4) per cent within the radius of our last kinematic tracer at 6.9 R-e. The total dynamical mass within this radius is found to be 1.5(-0.25)(+0.4) x 10(12) M-circle dot. In common with other studies of large ellipticals, we find that our derived dynamical mass profile is consistently higher than that derived by X-ray observations, by a factor of around 2.
Resumo:
We have imaged the H92alpha and H75alpha radio recombination line (RRL) emissions from the starburst galaxy NGC 253 with a resolution of similar to4 pc. The peak of the RRL emission at both frequencies coincides with the unresolved radio nucleus. Both lines observed toward the nucleus are extremely wide, with FWHMs of similar to200 km s(-1). Modeling the RRL and radio continuum data for the radio nucleus shows that the lines arise in gas whose density is similar to10(4) cm(-3) and mass is a few thousand M., which requires an ionizing flux of (6-20) x 10(51) photons s(-1). We consider a supernova remnant (SNR) expanding in a dense medium, a star cluster, and also an active galactic nucleus (AGN) as potential ionizing sources. Based on dynamical arguments, we rule out an SNR as a viable ionizing source. A star cluster model is considered, and the dynamics of the ionized gas in a stellar-wind driven structure are investigated. Such a model is only consistent with the properties of the ionized gas for a cluster younger than similar to10(5) yr. The existence of such a young cluster at the nucleus seems improbable. The third model assumes the ionizing source to be an AGN at the nucleus. In this model, it is shown that the observed X-ray flux is too weak to account for the required ionizing photon flux. However, the ionization requirement can be explained if the accretion disk is assumed to have a big blue bump in its spectrum. Hence, we favor an AGN at the nucleus as the source responsible for ionizing the observed RRLs. A hybrid model consisting of an inner advection-dominated accretion flow disk and an outer thin disk is suggested, which could explain the radio, UV, and X-ray luminosities of the nucleus.
Resumo:
In this paper, we model dwarf galaxies as a two-component system of gravitationally coupled stars and atomic hydrogen gas in the external force field of a pseudo-isothermal dark matter halo, and numerically obtain the radial distribution of HI vertical scale heights. This is done for a group of four dwarf galaxies (DDO 154, Ho II, IC 2574 and NGC 2366) for which most necessary input parameters are available from observations. The formulation of the equations takes into account the rising rotation curves generally observed in dwarf galaxies. The inclusion of self-gravity of the gas into the model at par with that of the stars results in scale heights that are smaller than what was obtained by previous authors. This is important as the gas scale height is often used for deriving other physical quantities. The inclusion of gas self-gravity is particularly relevant in the case of dwarf galaxies where the gas cannot be considered a minor perturbation to the mass distribution of the stars. We find that three out of four galaxies studied show a flaring of their HI discs with increasing radius, by a factor of a few within several disc scale lengths. The fourth galaxy has a thick HI disc throughout. This flaring arises as a result of the gas velocity dispersion remaining constant or decreasing only slightly while the disc mass distribution declines exponentially as a function of radius.
Resumo:
We introduce a new survey of massive stars in the Galaxy and the Magellanic Clouds using the Fibre Large Array Multi- Element Spectrograph ( FLAMES) instrument at the Very Large Telescope ( VLT). Here we present observations of 269 Galactic stars with the FLAMES- Giraffe Spectrograph ( R similar or equal to 25 000), in fields centered on the open clusters NGC3293, NGC4755 and NGC6611. These data are supplemented by a further 50 targets observed with the Fibre- Fed Extended Range Optical Spectrograph ( FEROS, R = 48 000). Following a description of our scientific motivations and target selection criteria, the data reduction methods are described; of critical importance the FLAMES reduction pipeline is found to yield spectra that are in excellent agreement with less automated methods. Spectral classifications and radial velocity measurements are presented for each star, with particular attention paid to morphological peculiarities and evidence of binarity. These observations represent a significant increase in the known spectral content of NGC3293 and NGC4755, and will serve as standards against which our subsequent FLAMES observations in the Magellanic Clouds will be compared.
Resumo:
High resolution spectra of seven early B-type giant/supergiant stars in the SMC cluster NGC330 are analysed to obtain their chemical compositions relative to SMC field and Galactic B-type stars. It is found that all seven stars are nitrogen rich with an abundance approximately 1.3 dex higher than an SMC main- sequence field B-type star, AV304. They also display evidence for deficiencies in carbon, but other metals have abundances typical of the SMC. Given the number of B-type stars with low projected rotational velocities in NGC330 (all our targets have v sin i <50 km s(-1)), we suggest that it is unlikely that the stars in our sample are seen almost pole-on, but rather that they are intrinsically slow rotators. Furthermore, none of our objects displays any evidence of significant Balmer emission excluding the possibility that these are Be stars observed pole-on. Comparing these results with the predictions of stellar evolution models including the effects of rotationally induced mixing, we conclude that while the abundance patterns may indeed be reproduced by these models, serious discrepancies exist. Most importantly, models including the effects of initially large rotational velocities do not reproduce the observed range of effective temperatures of our sample, nor the currently observed rotational velocities. Binary models may be able to produce stars in the observed temperature range but again may be incapable of producing suitable analogues with low rotational velocities. We also discuss the clear need for stellar evolution calculations employing the correct chemical mix of carbon, nitrogen and oxygen for the SMC.
Resumo:
An analysis is presented of VLT-FLAMES spectroscopy for three Galactic clusters, NGC3293, NGC4755 and NGC6611. Non-LTE model atmosphere calculations have been used to estimate effective temperatures (from either the helium spectrum or the silicon ionization equilibrium) and gravities (from the hydrogen spectrum). Projected rotational velocities have been deduced from the helium spectrum (for fast and moderate rotators) or the metal line spectrum (for slow rotators). The origin of the low gravity estimates for apparently near main sequence objects is discussed and is related to the stellar rotational velocity. The atmospheric parameters have been used to estimate cluster distances (which are generally in good agreement with previous determinations) and these have been used to estimate stellar luminosities and evolutionary masses. The observed Hertzsprung-Russell diagrams are compared with theoretical predictions and some discrepancies including differences in the main sequence luminosities are discussed. Cluster ages have been deduced and evidence for non-coeval star formation is found for all three of the clusters. Projected rotational velocities for targets in the older clusters, NGC3293 and NGC4755, have been found to be systematically larger than those for the field, confirming recent results in other similar age clusters. The distribution of projected rotational velocities are consistent with a Gaussian distribution of intrinsic rotational velocities. For the relatively unevolved targets in the older clusters, NGC3293 and NGC4755, the peak of the velocity distribution would be 250 km s(-1) with a full-width-half-maximum of approximately 180 km s(-1). For NGC6611, the sample size is relatively small but implies a lower mean rotational velocity. This may be evidence for the spin-down effect due to angular momentum loss through stellar winds, although our results are consistent with those found for very young high mass stars. For all three clusters we deduce present day mass functions with Gamma-values in the range of -1.5 to -1.8, which are similar to other young stellar clusters in the Milky Way.
Resumo:
We present new photometric and spectroscopic observations of an unusual luminous blue variable (LBV) in NGC 3432, covering three major outbursts in 2008 October, 2009 April and 2009 November. Previously, this star experienced an outburst also in 2000 (known as SN 2000ch). During outbursts the star reached an absolute magnitude between -12.1 and -12.8. Its spectrum showed H, He I and Fe II lines with P-Cygni profiles during and soon after the eruptive phases, while only intermediate-width lines in pure emission (including He II lambda 4686) were visible during quiescence. The fast-evolving light curve soon after the outbursts, the quasi-modulated light curve, the peak magnitude and the overall spectral properties are consistent with multiple episodes of variability of an extremely active LBV. However, the widths of the spectral lines indicate unusually high wind velocities (1500-2800 km s-1), similar to those observed in Wolf-Rayet stars. Although modulated light curves are typical of LBVs during the S-Dor variability phase, the luminous maxima and the high frequency of outbursts are unexpected in S-Dor variables. Such extreme variability may be associated with repeated ejection episodes during a giant eruption of an LBV. Alternatively, it may be indicative of a high level of instability shortly preceding the core-collapse or due to interaction with a massive, binary companion. In this context, the variable in NGC 3432 shares some similarities with the famous stellar system HD 5980 in the Small Magellanic Cloud, which includes an erupting LBV and an early Wolf-Rayet star.
Resumo:
We investigate the spatial coincidence of ultraluminous X-ray sources (ULXs) with young massive stellar clusters. In particular, we perform astrometry on Chandra and Hubble Space Telescope (HST) data of two ULXs that are possibly associated with such clusters.
Resumo:
We present new observations of 470 stars using the Fibre Large Array Multi-Element Spectrograph ( FLAMES) instrument in fields centered on the clusters NGC330 and NGC346 in the Small Magellanic Cloud (SMC), and NGC2004 and the N11 region in the Large Magellanic Cloud (LMC). A further 14 stars were observed in the N11 and NGC330 fields using the Ultraviolet and Visual Echelle Spectrograph (UVES) for a separate programme. Spectral classifications and stellar radial velocities are given for each target, with careful attention to checks for binarity. In particular, we have investigated previously unexplored regions around the central LH9/LH10 complex of N11, finding similar to 25 new O-type stars from our spectroscopy. We have observed a relatively large number of Be-type stars that display permitted Fe II emission lines. These are primarily not in the cluster cores and appear to be associated with classical Be-type stars, rather than pre main-sequence objects. The presence of the Fe II emission, as compared to the equivalent width of Ha, is not obviously dependent on metallicity. We have also explored the relative fraction of Be- to normal B-type stars in the field-regions near to NGC330 and NGC2004, finding no strong evidence of a trend with metallicity when compared to Galactic results. A consequence of service observations is that we have reasonable time-sampling in three of our FLAMES fields. We find lower limits to the binary fraction of O- and early B-type stars of 23 to 36%. One of our targets (NGC346-013) is especially interesting with a massive, apparently hotter, less luminous secondary component.
Resumo:
Photometric and spectroscopic observations of the faint Supernovae (SNe) 2002kg and 2003gm, and their precursors, in NGC 2403 and NGC 5334, respectively, are presented. The properties of these SNe are discussed in the context of previously proposed scenarios for faint SNe: low-mass progenitors producing underenergetic SNe; SNe with ejecta constrained by a circumstellar medium; and outbursts of massive Luminous Blue Variables (LBVs). The last scenario has been referred to as 'Type V SNe', 'SN impostors' or 'fake SNe'.
Resumo:
We report on our attempts to locate the progenitor of the Type Ic supernova SN 2004gt in NGC 4038. We use high-resolution HST ACS images of SN 2004gt and have compared them with deep pre-explosion HST WFPC2 F336W, F439W, F555W, and F814W images. We identify the SN location on the pre-explosion frames with an accuracy of 5 mas. We show that the progenitor is below the detection thresholds of all the pre-explosion images. These detection limits are used to place luminosity and mass limits on the progenitor. The progenitor of SN 2004gt seems to be restricted to a low-luminosity high-temperature star, either a single WC star with an initial mass of > 40 M-circle dot or a low-mass star in a binary. The pre-explosion data cannot distinguish between the two scenarios.
Resumo:
We have obtained the first high-resolution spectra of individual stars in the dwarf irregular galaxy NGC 6822. The spectra of the two A-type supergiants were obtained at the Very Large Telescope and Keck Observatories, using the Ultraviolet-Visual Echelle Spectrograph and the High Resolution Echelle Spectrometer, respectively. A detailed model atmospheres analysis has been used to determine their atmospheric parameters and elemental abundances. The mean iron abundance from these two stars is [[Fe/H]] = -0.49 +/- 0.22 (+/- 0.21),(6) with Cr yielding a similar underabundance, [[Cr/H]] = -0.50 +/- 0.20 (+/- 0.16). This confirms that NGC 6822 has a metallicity that is slightly higher than that of the SMC and is the first determination of the present-day iron group abundances in NGC 6822. The mean stellar oxygen abundance, 12 + log (O/H) = 8.36 +/- 0.19 (+/- 0.21), is in good agreement with the nebular oxygen results. Oxygen has the same underabundance as iron, [[O/ Fe]] = + 0.02 +/- 0.20 (+/- 0.21). This O/Fe ratio is very similar to that seen in the Magellanic Clouds, which supports the picture that chemical evolution occurs more slowly in these lower mass galaxies, although the O/Fe ratio is also consistent with that observed in comparatively metal-poor stars in the Galactic disk. Combining all of the available abundance observations for NGC 6822 shows that there is no trend in abundance with galactocentric distance. However, a subset of the highest quality data is consistent with a radial abundance gradient. More high-quality stellar and nebular observations are needed to confirm this intriguing possibility.
Resumo:
Half hour exposures using the ESO VLT/FORS1 combination at Paranal in Chile have allowed us to obtain spectra for three B supergiants in the dwarf irregular galaxy NGC 6822. The spectra have been analysed using non-LTE techniques and temperatures, gravities, helium content and abundances have been obtained. Overall the metallicity of NGC 6822 is found to lie between that of the LMC and of the SMC, in agreement with previous observations of H II regions and in contrast to the earlier findings of Massey et al. (1995). The analysis of H-alpha yields estimates of the mass-loss rates and wind momenta. These results demonstrate that significantly longer exposures with the same instruments will allow us to perform quantitative spectroscopy of blue supergiants in galaxies far beyond the Local Group.
Resumo:
Context. NGC 346-013 is a peculiar double-lined eclipsing binary in the Small Magellanic Cloud (SMC) discovered by the VLT-FLAMES survey of massive stars.