173 resultados para NEUTRINOS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the unanswered questions of modern cosmology is the issue of baryogenesis. Why does the universe contain a huge amount of baryons but no antibaryons? What kind of a mechanism can produce this kind of an asymmetry? One theory to explain this problem is leptogenesis. In the theory right-handed neutrinos with heavy Majorana masses are added to the standard model. This addition introduces explicit lepton number violation to the theory. Instead of producing the baryon asymmetry directly, these heavy neutrinos decay in the early universe. If these decays are CP-violating, then they produce lepton number. This lepton number is then partially converted to baryon number by the electroweak sphaleron process. In this work we start by reviewing the current observational data on the amount of baryons in the universe. We also introduce Sakharov's conditions, which are the necessary criteria for any theory of baryogenesis. We review the current data on neutrino oscillation, and explain why this requires the existence of neutrino mass. We introduce the different kinds of mass terms which can be added for neutrinos, and explain how the see-saw mechanism naturally explains the observed mass scales for neutrinos motivating the addition of the Majorana mass term. After introducing leptogenesis qualitatively, we derive the Boltzmann equations governing leptogenesis, and give analytical approximations for them. Finally we review the numerical solutions for these equations, demonstrating the capability of leptogenesis to explain the observed baryon asymmetry. In the appendix simple Feynman rules are given for theories with interactions between both Dirac- and Majorana-fermions and these are applied at the tree level to calculate the parameters relevant for the theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss symmetries and scenarios leading to quasi-degenerate neutrinos in type I seesaw models. The existence of degeneracy in the present approach is not linked to any specific structure for the Dirac neutrino Yukawa coupling matrix y(D) and holds in general. Basic input is the application of the minimal flavour violation principle to the leptonic sector. Generalizing this principle, we assume that the structure of the right-handed neutrino mass matrix is determined by y(D) and the charged lepton Yukawa coupling matrix y(l) in an effective theory invariant under specific groups G(F) contained in the full symmetry group of the kinetic energy terms. G(F) invariance also leads to specific structure for the departure from degeneracy. The neutrino mass matrix (with degenerate mass m(0)) resulting after seesaw mechanism has a simple form Mv approximate to m(0)(I - py(l)y(l)(T)) in one particular scenario based on supersymmetry. This form is shown tolead to correct description of neutrino masses and mixing angles. The thermal leptogenesis after inclusion of flavour effects can account for the observed baryon asymmetry of the universe within the present scenario. Rates for lepton flavour violating processes can occur at observable levels in the supersymmetric version of the scenario. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel scheme where Dirac neutrinos are realized even if lepton number violating Majorana mass terms are present. The setup is the Randall-Sundrum framework with bulk right-handed neutrinos. Bulk mass terms of both Majorana and Dirac type are considered. It is shown that massless zero mode solutions exist when the bulk Dirac mass term is set to zero. In this limit, it is found that the effective 4D small neutrino mass is primarily of Dirac nature, with the Majorana-type contributions being negligible. Interestingly, this scenario is very similar to the one known with flat extra dimensions. Neutrino phenomenology is discussed by fitting both charged lepton masses and neutrino masses simultaneously. A single Higgs localized on the IR brane is highly constrained, as unnaturally large Yukawa couplings are required to fit charged lepton masses. A simple extension with two Higgs doublets is presented, which facilitates a proper fit for the lepton masses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As estrelas de nêutrons nascem com altas temperaturas (~ 1011 K) e durante alguns segundos sofrem um rápido resfriamento por emissão de neutrinos. O processo Urca direto é o principal mecanismo para explicar essa perda de energia. O problema do resfriamento das estrelas de nêutrons é um problema de grande interesse porque seu entendimento pode fornecer informações importantes sobre a constituição do interior da estrela. Na literatura existente até o momento, a emissividade de neutrinos é calculada considerando os núcleons como partículas não relativísticas quando considerados todos os níveis de Landau das partículas carregadas. Por outro lado, a emissividade de neutrinos para núcleons relativísticos é calculada considerando somente o primeiro nível de Landau (para campo magnético forte). Para campos magnéticos fracos, onde mais de um nível de Landau é ocupado, é usada a emissividade correspondente à do campo nulo. Neste trabalho aplicamos a teoria de Weinberg-Salan para interações fracas no cálculo da emissividade de neutrinos com e sem campo magnético presente, num cálculo totalmente relativístico para os núcleons e considerando todos os níveis de Landau. Esta é a contribuição original do trabalho. Para descrever a matéria a altas densidades, utilizamos uma teoria relativística de campo médio a temperatura zero que inclui apenas o octeto bariônico e os léptons mais leves. São apresentados os resultados para a emissividade de neutrinos, onde é evidente a ocupação dos diferentes níveis de Landau como função do campo magnético.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the supersymmetric extension of the 3-3-1 model with right-handed neutrinos. We study the mass spectra in the scalar and pseudoscalar sectors, and for a given set of the input parameters, we find that the lightest scalar in the model has a mass of 130 GeV and the lightest pseudoscalar has mass of 5 GeV. However, this pseudoscalar decouples from the Z(0) at high energy scales since it is almost a singlet under SU(2)(L)circle timesU(1)(Y).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We implement the mechanism of spontaneous CP violation in the 3-3-1 model with right-handed neutrinos and recognize their sources of CP violation. Our main result is that the mechanism works already in the minimal version of the model and new sources of CP violation emerges as an effect of new physics at energies higher than the electroweak scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that there is a general sort of neutrino effective interactions which allows, under certain conditions, to have relatively large magnetic dipole moments for neutrinos while keeping their masses non-calculable and arbitrarily small. The main ingredient of our mechanism for generating large magnetic moment to the neutrinos is the existence of a neutral scalar which has the only role to give mass to the neutrinos or the existence of flavor changing neutral currents in the neutrino sector. Although our approach is model independent, some models in which those interactions arise are commented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the potential of a future kilometer-scale neutrino telescope, such as the proposed IceCube detector in the South Pole, to measure and disentangle the yet unknown components of the cosmic neutrino flux, the prompt atmospheric neutrinos coming from the decay of charmed particles and the extra-galactic neutrinos in the 10 TeV to 1 EeV energy range. Assuming a power law type spectra, dphi(nu)/dE(nu)similar toalphaE(nu)(beta), we quantify the discriminating power of the IceCube detector and discuss how well we can determine magnitude (alpha) as well as slope (beta) of these two components of the high energy neutrino spectrum, taking into account the background coming from the conventional atmospheric neutrinos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that experimental data, coming from solar and atmospheric neutrino detectors and also from experiments which look for neutrino oscillations. strongly suggest that neutrinos must have a mass different from zero. However at least the solar and/or the atmospheric neutrino data can be related to new flavor changing interactions beyond the standard model instead to the finite mass of neutrinos. This new physics may induce i) extra effects in neutrino-matter interactions, ii) CP violation in pion and lepton decays and, iii) muonium to antimuonium transition. We give two examples of models in which all those effects arise even with strictly massless neutrinos: the 331 model and multi-Higgs doublet extension of the standard model (mHDM) with flavor changing neutral currents in the charged lepton sector. It means that in this kind of models if neutrino masses were eventually needed, they will be independent of the parameters of the new interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neutrino oscillation experiment KamLAND has provided us with the first evidence for e disappearance, coming from nuclear reactors. We have combined their data with all solar neutrino data, assuming two flavor neutrino mixing, and obtained allowed parameter regions which are compatible with the so-called large mixing angle MSW solution to the solar neutrino problem. The allowed regions in the plane of mixing angle and mass squared difference are now split into two islands at 99% C.L. We have speculated how these two islands can be distinguished in the near future. We have shown that a 50% reduction of the error on SNO neutral-current measurement can be important in establishing in each of these islands the true values of these parameters lie, We also have simulated KamLAND positron energy spectrum after I year of data taking, assuming the current best fitted values of the oscillation parameters, combined it the with current solar neutrino data and showed how these two split islands can be modified. (C) 2003 Published by Elsevier B.V. B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)