66 resultados para NEUROKININ
Resumo:
Context: Mutations in TAC3 and TACR3 (encoding neurokinin B and its receptor) have been identified in Turkish patients with idiopathic hypogonadotropic hypogonadism (IHH), but broader populations have not yet been tested and genotype-phenotype correlations have not been established. Objective: A broad cohort of normosmic IHH probands was screened for mutations in TAC3/TACR3 to evaluate the prevalence of such mutations and define the genotype/phenotype relationships. Design and Setting: The study consisted of sequencing of TAC3/TACR3, in vitro functional assays, and neuroendocrine phenotyping conducted in tertiary care centers worldwide. Patients or Other Participants: 345 probands, 18 family members, and 292 controls were studied. Intervention: Reproductive phenotypes throughout reproductive life and before and after therapy were examined. Main Outcome Measure: Rare sequence variants in TAC3/TACR3 were detected. Results: In TACR3, 19 probands harbored 13 distinct coding sequence rare nucleotide variants [three nonsense mutations, six nonsynonymous, four synonymous (one predicted to affect splicing)]. In TAC3, one homozygous single base pair deletion was identified, resulting in complete loss of the neurokinin B decapeptide. Phenotypic information was available on 16 males and seven females with coding sequence variants in TACR3/TAC3. Of the 16 males, 15 had microphallus; none of the females had spontaneous thelarche. Seven of the 16 males and five of the seven females were assessed after discontinuation of therapy; six of the seven males and four of the five females demonstrated evidence for reversibility of their hypogonadotropism. Conclusions: Mutations in the neurokinin B pathway are relatively common as causes of hypogonadism. Although the neurokinin B pathway appears essential during early sexual development, its importance in sustaining the integrity of the hypothalamic-pituitary-gonadal axis appears attenuated over time. (J Clin Endocrinol Metab 95: 2857-2867, 2010)
Resumo:
We assessed the role of NK-1 receptors (NK1R) expressing neurons in the locus coeruleus (LC) on cardiorespiratory responses to hypercapnia. To this end, we injected substance P-saporin conjugate (SP-SAP) to kill NK-1 immunoreactive (NK1R-ir) neurons or SAP alone as a control. Immunohistochemistry for NK1R, tyrosine hydroxylase (TH-ir) and Glutamic Acid Decarboxylase (GAD-ir) were performed to verify if NK1R-expressing neurons, catecholaminergic and/or GABAergic neurons were eliminated. A reduced NK1R-ir in the LC (72%) showed the effectiveness of the lesion. SP-SAP lesion also caused a reduction of TH-ir (66%) and GABAergic neurons (70%). LC SP-SAP lesion decreased by 30% the ventilatory response to 7% CO(2) and increased the heart rate (fH) during hypercapnia but did not affect MAP. The present data suggest that different populations of neurons (noradrenergic, GABAergic, and possibly others) in the LC express NK1R modulating differentially the hypercapnic ventilatory response, since catecholaminergic neurons are excitatory and GABAergic ones are inhibitory. Additionally, NK1R-ir neurons in the LC, probably GABAergic ones, seem to modulate fH during CO(2) exposure, once our previous data demonstrated that catecholaminergic lesion does not affect this variable. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Aims Obesity and asthma are widely prevalent and associated disorders. Recent studies of our group revealed that Substance P (SP) is involved in pathophysiology of obese-asthma phenotype in mice through its selective NK1 receptor (NK1-R). Lymphangiogenesis is impaired in asthma and obesity, and SP activates contractile and inflammatory pathways in lymphatics. Our aim was to study whether NK1-R expression was involved in lymphangiogenesis on visceral (VAT) and subcutaneous (SAT) adipose tissues and in the lungs, in obese-allergen sensitized mice. Main methods Diet-induced obese and ovalbumin (OVA)-sensitized Balb/c mice were treated with a selective NK1-R antagonist (CJ 12,255, Pfizer Inc., USA) or placebo. Lymphatic structures (LYVE-1 +) and NK1-R expression were analyzed by immunohistochemistry. A semi-quantitative score methodology was used for NK1-R expression. Key findings Obesity and allergen-sensitization together increased the number of LYVE-1 + lymphatics in VAT and decreased it in SAT and lungs. NK1-R was mainly expressed on adipocyte membranes of VAT, blood vessel areas of SAT, and in lung epithelium. Obesity and allergen-sensitization combined increased the expression of NK1-R in VAT, SAT and lungs. NK1-R antagonist treatment reversed the effects observed in lymphangiogenesis in those tissues. Significance The obese-asthma phenotype in mice is accompanied by increased expression of NK1-R on adipose tissues and lung epithelium, reflecting that SP released during inflammation may act directly on these tissues. Blocking NK1-R affects lymphangiogenesis, implying a role of SP, with opposite physiological consequences in VAT, and in SAT and lungs. Our results provide a clue for a novel SP role in the obese-asthma phenotype.
Resumo:
Aims: Obesity and asthma are widely prevalent and associated disorders. Recent studies of our group revealed that Substance P (SP) is involved in pathophysiology of obese-asthma phenotype in mice through its selective NK1 receptor (NK1-R). Lymphangiogenesis is impaired in asthma and obesity, and SP activates contractile and inflammatory pathways in lymphatics. Our aim was to study whether NK1-R expression was involved in lymphangiogenesis on visceral (VAT) and subcutaneous (SAT) adipose tissues and in the lungs, in obeseallergen sensitized mice. Main methods: Diet-induced obese and ovalbumin (OVA)-sensitized Balb/c mice were treated with a selective NK1-R antagonist (CJ 12,255, Pfizer Inc., USA) or placebo. Lymphatic structures (LYVE-1+) and NK1-R expression were analyzed by immunohistochemistry. A semi-quantitative score methodology was used for NK1-R expression. Key findings: Obesity and allergen-sensitization together increased the number of LYVE-1+ lymphatics in VAT and decreased it in SAT and lungs. NK1-R was mainly expressed on adipocyte membranes of VAT, blood vessel areas of SAT, and in lung epithelium. Obesity and allergen-sensitization combined increased the expression of NK1-R in VAT, SAT and lungs. NK1-R antagonist treatment reversed the effects observed in lymphangiogenesis in those tissues. Significance: The obese-asthma phenotype in mice is accompanied by increased expression of NK1-R on adipose tissues and lung epithelium, reflecting that SP released during inflammation may act directly on these tissues. Blocking NK1-R affects lymphangiogenesis, implying a role of SP, with opposite physiological consequences in VAT, and in SAT and lungs. Our results provide a clue for a novel SP role in the obese-asthma phenotype.
Resumo:
Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by γ-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 μL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.
Resumo:
The important role of platelets in the development of arterial thrombosis and cardiovascular disease is well established. Current treatments for arterial thrombosis include anti-platelet agents such as aspirin, thienopyridines and glycoprotein IIb-IIIa inhibitors. Despite these drugs being effective there remains a substantial unmet clinical demand for more effective therapeutic approaches, which may reflect the existence of alternative underlying regulatory mechanisms to those already targeted. Recent publications have demonstrated a key role for tachykinins in the positive feedback regulation of platelet aggregation and thrombus formation. The pro-thrombotic effects of tachykinins on platelets are mediated through the neurokinin 1 receptor, which may therefore offer a novel therapeutic drug target in the prevention and the treatment of arterial thrombosis.
Resumo:
Platelets play an important role in hemostasis, with inappropriate platelet activation being a major contributor to debilitating and often fatal thrombosis by causing myocardial infarction and stroke. Although current antithrombotic treatment is generally well tolerated and effective, many patients still experience cardiovascular problems, which may reflect the existence of alternative underlying regulatory mechanisms in platelets to those targeted by existing drugs. In this study, we define a role for peripherally distributed members of the tachykinin family of peptides, namely substance P and the newly discovered endokinins A and B that are present in platelets, in the activation of platelet function and thrombus formation. We have reported previously that the preferred pharmacologically characterized receptor for these peptides, the NK1 receptor, is present on platelets. Inhibition or deficiency of the NK1 receptor, or SP agonist activity, resulted in substantially reduced thrombus formation in vitro under arterial flow conditions, increased bleeding time in mice, and a decrease in experimentally induced thromboembolism. Inhibition of the NK1 receptor may therefore provide benefit in patients vulnerable to thrombosis and may offer an alternative therapeutic target.
Resumo:
The GATA family of transcription factors establishes genetic networks that control developmental processes including hematopoiesis, vasculogenesis, and cardiogenesis. We found that GATA-1 strongly activates transcription of the Tac-2 gene, which encodes proneurokinin-B, a precursor of neurokinin-B (NK-B). Neurokinins function through G protein-coupled transmembrane receptors to mediate diverse physiological responses including pain perception and the control of vascular tone. Whereas an elevated level of NK-B was implicated in pregnancy-associated pre-eclampsia ( Page, N. M., Woods, R. J., Gardiner, S. M., Lomthaisong, K., Gladwell, R. T., Butlin, D. J., Manyonda, I. T., and Lowry, P. J. ( 2000) Nature 405, 797 - 800), the regulation of NK-B synthesis and function are poorly understood. Tac-2 was expressed in normal murine erythroid cells and was induced upon ex vivo erythropoiesis. An estrogen receptor fusion to GATA-1 (ER-GATA-1) and endogenous GATA-1 both occupied a region of Tac-2 intron-7, which contains two conserved GATA motifs. Genetic complementation analysis in GATA-1-null G1E cells revealed that endogenous GATA-2 occupied the same region of intron-7, and expression of ER-GATA-1 displaced GATA-2 and activated Tac-2 transcription. Erythroid cells did not express neurokinin receptors, whereas aortic and yolk sac endothelial cells differentially expressed neurokinin receptor subtypes. Since NK-B induced cAMP accumulation in yolk sac endothelial cells, these results suggest a new mode of vascular regulation in which GATA-1 controls NK-B synthesis in erythroid cells.
Resumo:
Neurokinin (NK) B is a member of the tachykinin family of neurotransmitters, exerting hypotensive or hypertensive effects in the mammalian vasculature through synaptic release from peripheral neurons, according to either NK1 and NK2 or NK3 receptor subtype expression, respectively. There is recent evidence that NKB is expressed by the syncytiotrophoblast of the human placenta, an organ that is not innervated. We hypothesized that NKB is a paracrine modulator of tone in the fetal placental circulation. We tested this hypothesis using the in vitro perfused human placental cotyledon. Our data show that NKB is a dilator of the fetal vasculature, causing a maximal 25.1+/-4.5% (mean+/-SEM; n=5) decrease in fetal-side arterial hydrostatic pressure (5-muM NKB bolus; effective concentration in the circulation, 1.89 nM) after preconstriction with U-46619. RT-PCR demonstrated the presence of mRNA for NK1 and NK2 tachykinin receptors in the placenta. Using selective receptor antagonists, we found that NKB-induced vasodilation is through the NK1 receptor subtype. We found no evidence for the involvement of either nitric oxide or prostacyclin in this response. This study demonstrates a paracrine role for NKB in the regulation of fetal placental vascular tone.
Resumo:
Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by beta-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by beta-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK(1)R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nM, 10 min) induced interaction of NK(1)R and beta-arrestin at the plasma membrane, and the SP-NK(1)R-beta-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK(1)R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H(+)ATPase inhibitor bafilomycin A(1), which prevent endosomal SP degradation, suppressed NK(1)R recycling by >50%. Preincubation of neurones with SP (10 nM, 5 min) desensitized Ca(2+) transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK(1)R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP-NK(1)R-beta-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK(1)R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating beta-arrestin-mediated endosomal signalling.
Resumo:
Activated G protein-coupled receptors (GPCRs) are phosphorylated and interact with beta-arrestins, which mediate desensitization and endocytosis. Endothelin-converting enzyme-1 (ECE-1) degrades neuropeptides in endosomes and can promote recycling. Although endocytosis, dephosphorylation, and recycling are accepted mechanisms of receptor resensitization, a large proportion of desensitized receptors can remain at the cell surface. We investigated whether reactivation of noninternalized, desensitized (phosphorylated) receptors mediates resensitization of the substance P (SP) neurokinin 1 receptor (NK(1)R). Herein, we report a novel mechanism of resensitization by which protein phosphatase 2A (PP2A) is recruited to dephosphorylate noninternalized NK(1)R. A desensitizing concentration of SP reduced cell-surface SP binding sites by only 25%, and SP-induced Ca(2+) signals were fully resensitized before cell-surface binding sites started to recover, suggesting resensitization of cell-surface-retained NK(1)R. SP induced association of beta-arrestin1 and PP2A with noninternalized NK(1)R. beta-Arrestin1 small interfering RNA knockdown prevented SP-induced association of cell-surface NK(1)R with PP2A, indicating that beta-arrestin1 mediates this interaction. ECE-1 inhibition, by trapping beta-arrestin1 in endosomes, also impeded SP-induced association of cell-surface NK(1)R with PP2A. Resensitization of NK(1)R signaling required both PP2A and ECE-1 activity. Thus, after stimulation with SP, PP2A interacts with noninternalized NK(1)R and mediates resensitization. PP2A interaction with NK(1)R requires beta-arrestin1. ECE-1 promotes this process by releasing beta-arrestin1 from NK(1)R in endosomes. These findings represent a novel mechanism of PP2A- and ECE-1-dependent resensitization of GPCRs.
Resumo:
BACKGROUND AND PURPOSE: The metalloendopeptidase endothelin-converting enzyme 1 (ECE-1) is prominently expressed in the endothelium where it converts big endothelin to endothelin-1, a vasoconstrictor peptide. Although ECE-1 is found in endosomes in endothelial cells, the role of endosomal ECE-1 is unclear. ECE-1 degrades the pro-inflammatory neuropeptide substance P (SP) in endosomes to promote recycling and re-sensitization of its neurokinin 1 (NK(1)) receptor. We investigated whether ECE-1 regulates NK(1) receptor re-sensitization and the pro-inflammatory effects of SP in the endothelium. EXPERIMENTAL APPROACH: We examined ECE-1 expression, SP trafficking and NK(1) receptor re-sensitization in human microvascular endothelial cells (HMEC-1), and investigated re-sensitization of SP-induced plasma extravasation in rats. KEY RESULTS: HMEC-1 expressed all four ECE-1 isoforms (a-d), and fluorescent SP trafficked to early endosomes containing ECE-1b/d. The ECE-1 inhibitor SM-19712 prevented re-sensitization of SP-induced Ca2+ signals in HMEC-1 cells. Immunoreactive ECE-1 and NK(1) receptors co-localized in microvascular endothelial cells in the rat. SP-induced extravasation of Evans blue in the urinary bladder, skin and ears of the rat desensitized when the interval between two SP injections was 10 min, and re-sensitized after 480 min. SM-19712 inhibited this re-sensitization. CONCLUSIONS AND IMPLICATIONS: By degrading endocytosed SP, ECE-1 promotes the recycling and re-sensitization of NK(1) receptors in endothelial cells, and thereby induces re-sensitization of the pro-inflammatory effects of SP. Thus, ECE-1 inhibitors may ameliorate the pro-inflammatory actions of SP.
Resumo:
Transient stimulation with substance P (SP) induces endocytosis and recycling of the neurokinin-1 receptor (NK(1)R). The effects of sustained stimulation by high concentrations of SP on NK(1)R trafficking and Ca(2+) signaling, as may occur during chronic inflammation and pain, are unknown. Chronic exposure to SP (100 nm, 3 h) completely desensitized Ca(2+) signaling by wild-type NK(1)R (NK(1)Rwt). Resensitization occurred after 16 h, and cycloheximide prevented resensitization, implicating new receptor synthesis. Lysine ubiquitination of G-protein-coupled receptors is a signal for their trafficking and degradation. Lysine-deficient mutant receptors (NK(1)RDelta5K/R, C-terminal tail lysines; and NK(1)RDelta10K/R, all intracellular lysines) were expressed at the plasma membrane and were functional because they responded to SP by endocytosis and by mobilization of Ca(2+) ions. SP desensitized NK(1)Rwt, NK(1)RDelta5K/R, and NK(1)RDelta10K/R. However, NK(1)RDelta5K/R and NK(1)RDelta10K/R resensitized 4-8-fold faster than NK(1)Rwt by cycloheximide-independent mechanisms. NK(1)RDelta325 (a naturally occurring truncated variant) showed incomplete desensitization, followed by a marked sensitization of signaling. Upon labeling receptors in living cells using antibodies to extracellular epitopes, we observed that SP induced endocytosis of NK(1)Rwt, NK(1)RDelta5K/R, and NK(1)RDelta10K/R. After 4 h in SP-free medium, NK(1)RDelta5K/R and NK(1)RDelta10K/R recycled to the plasma membrane, whereas NK(1)Rwt remained internalized. SP induced ubiquitination of NK(1)Rwt and NK(1)RDelta5K/R as determined by immunoprecipitation under nondenaturing and denaturing conditions and detected with antibodies for mono- and polyubiquitin. NK(1)RDelta10K/R was not ubiquitinated. Whereas SP induced degradation of NK(1)Rwt, NK(1)RDelta5K/R and NK(1)RDelta10K/R showed approximately 50% diminished degradation. Thus, chronic stimulation with SP induces ubiquitination of the NK(1)R, which mediates its degradation and down-regulation.