24 resultados para NEUROFEEDBACK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le neurofeedback (NF) suscite actuellement un vif intérêt dans la prise en charge du trouble déficitaire de l’attention avec hyperactivité (TDAH) chez l’enfant. Proposée comme méthode alternative à la médication par de nombreux cliniciens, notamment aux États-Unis, le NF est une intervention non-invasive de type électrophysiologique qui repose sur l’apprentissage par conditionnement opérant de l’autorégulation d’ondes cérébrales déviantes. Les études empiriques qui étayent cette pratique font toutefois l’objet de virulentes critiques de la part de spécialistes dans le domaine du TDAH en raison de résultats systématiquement positifs mais non spécifiques, auxquels s’ajoutent de nombreuses lacunes méthodologiques. Les travaux de cette thèse visent à appliquer une méthodologie stricte de type essai clinique contrôlé avec assignation aléatoire afin d’isoler les effets particuliers du NF, en appliquant un protocole d’entraînement propre au déficit primaire sous-tendant le TDAH, soit l’inhibition motrice, dans le but d’évaluer la spécificité de cette intervention. Dans un premier temps, les connaissances relatives à la nosologie du TDAH, à ses principaux traitements, au NF et aux capacités d’inhibition chez l’enfant ayant un TDAH sont présentées (Chapitre 1). Ensuite, les études réalisées dans le cadre de cette thèse sont exposées. Dans l’étude initiale, la spécificité du NF est évaluée sur les capacités d’inhibition grâce à des mesures subjectives, soit des questionnaires de comportements complétés par les parents, ainsi que des mesures objectives, à savoir des tâches neuropsychologiques (Chapitre 2). Afin de préciser davantage les conséquences d’un entraînement à l’autorégulation d’ondes cérébrales, l’étude subséquente s’est intéressée à l’impact neurophysiologiques de l’amélioration des capacités d’inhibition, par le biais d’une étude en potentiels évoqués employant une tâche de performance continue de type Stop-signal (Chapitre 3). Les principaux résultats reflètent un recrutement sous optimal, avec une puissance statistique insuffisante pour réaliser des statistiques quantitatives de groupe. Néanmoins, l’appréciation des données selon une approche d’étude de cas multiples permet de mettre en évidence la présence d’une réponse placebo sur les capacités d’inhibition suite à un entraînement en NF. Finalement, les implications de la taille de l’échantillon, ainsi que les limites et les critiques de ces études sont discutées au Chapitre 4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El neurofeedback es una técnica no invasiva en la que se pretende corregir, mediante condicionamiento operante, ondas cerebrales que se encuentren alteradas en el electroencefalograma. Desde 1967, se han conducido numerosas investigaciones relacionadas con los efectos de la técnica en el tratamiento de alteraciones psicológicas. Sin embargo, a la fecha no existen revisiones sistemáticas que reúnan los temas que serán aquí tratados. El aporte de este trabajo es la revisión de 56 artículos, publicados entre los años 1995 y 2013 y la evaluación metodológica de 29 estudios incluidos en la revisión. La búsqueda fue acotada a la efectividad del neurofeedback en el tratamiento de depresión, ansiedad, trastorno obsesivo compulsivo (TOC), ira y fibromialgia. Los hallazgos demuestran que el neurofeedback ha tenido resultados positivos en el tratamiento de estos trastornos, sin embargo, es una técnica que aún está en desarrollo, con unas bases teóricas no muy bien establecidas y cuyos resultados necesitan de diseños metodológicamente más sólidos que ratifiquen su validez.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Event-related desynchronization (ERD) of the electroencephalogram (EEG) from the motor cortex is associated with execution, observation, and mental imagery of motor tasks. Generation of ERD by motor imagery (MI) has been widely used for brain-computer interfaces (BCIs) linked to neuroprosthetics and other motor assistance devices. Control of MI-based BCIs can be acquired by neurofeedback training to reliably induce MI-associated ERD. To develop more effective training conditions, we investigated the effect of static and dynamic visual representations of target movements (a picture of forearms or a video clip of hand grasping movements) during the BCI training. After 4 consecutive training days, the group that performed MI while viewing the video showed significant improvement in generating MI-associated ERD compared with the group that viewed the static image. This result suggests that passively observing the target movement during MI would improve the associated mental imagery and enhance MI-based BCIs skills.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurofeedback (NF) is a training to enhance self-regulatory capacity over brain activity patterns and consequently over brain mental states. Recent findings suggest that NF is a promising alternative for the treatment of attention-deficit/hyperactivity disorder (ADHD). We comprehensively reviewed literature searching for studies on the effectiveness and specificity of NF for the treatment of ADHD. In addition, clinically informative evidence-based data are discussed. We found 3 systematic review on the use of NF for ADHD and 6 randomized controlled trials that have not been included in these reviews. Most nonrandomized controlled trials found positive results with medium-to-large effect sizes, but the evidence for effectiveness are less robust when only randomized controlled studies are considered. The direct comparison of NF and sham-NF in 3 published studies have found no group differences, nevertheless methodological caveats, such as the quality of the training protocol used, sample size, and sample selection may have contributed to the negative results. Further data on specificity comes from electrophysiological studies reporting that NF effectively changes brain activity patterns. No safety issues have emerged from clinical trials and NF seems to be well tolerated and accepted. Follow-up studies support long-term effects of NF. Currently there is no available data to guide clinicians on the predictors of response to NF and on optimal treatment protocol. In conclusion, NF is a valid option for the treatment for ADHD, but further evidence is required to guide its use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the ongoing attempts to enhance cognitive performance, an emergent and yet underrepresented venue is brought by hemoencefalographic neurofeedback (HEG). This paper presents three related advances in HEG neurofeedback for cognitive enhancement: a) a new HEG protocol for cognitive enhancement, as well as b) the results of independent measures of biological efficacy (EEG brain maps) extracted in three phases, during a one year follow up case study; c) the results of the first controlled clinical trial of HEG, designed to assess the efficacy of the technique for cognitive enhancement of an adult and neurologically intact population. The new protocol was developed in the environment of a software that organizes digital signal algorithms in a flowchart format. Brain maps were produced through 10 brain recordings. The clinical trial used a working memory test as its independent measure of achievement. The main conclusion of this study is that the technique appears to be clinically promising. Approaches to cognitive performance from a metabolic viewpoint should be explored further. However, it is particularly important to note that, to our knowledge, this is the world's first controlled clinical study on the matter and it is still early for an ultimate evaluation of the technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tomographic neurofeedback (tNF) training was evaluated as a treatment for attention-deficit/hyperactivity disorder (ADHD). To investigate the specificity of the treatment, outcomes were related to learning during tNF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spontaneous EEG signal can be parsed into sub-second periods of stable functional states (microstates) that assumingly correspond to brief large scale synchronization events. In schizophrenia, a specific class of microstate (class "D") has been found to be shorter than in healthy controls and to be correlated with positive symptoms. To explore potential new treatment options in schizophrenia, we tested in healthy controls if neurofeedback training to self-regulate microstate D presence is feasible and what learning patterns are observed. Twenty subjects underwent EEG-neurofeedback training to up-regulate microstate D presence. The protocol included 20 training sessions, consisting of baseline trials (resting state), regulation trials with auditory feedback contingent on microstate D presence, and a transfer trial. Response to neurofeedback was assessed with mixed effects modelling. All participants increased the percentage of time spent producing microstate D in at least one of the three conditions (p < 0.05). Significant between-subjects across-sessions results showed an increase of 0.42 % of time spent producing microstate D in baseline (reflecting a sustained change in the resting state), 1.93 % of increase during regulation and 1.83 % during transfer. Within-session analysis (performed in baseline and regulation trials only) showed a significant 1.65 % increase in baseline and 0.53 % increase in regulation. These values are in a range that is expected to have an impact upon psychotic experiences. Additionally, we found a negative correlation between alpha power and microstate D contribution during neurofeedback training. Given that microstate D has been related to attentional processes, this result provides further evidence that the training was to some degree specific for the attentional network. We conclude that microstate-neurofeedback training proved feasible in healthy subjects. The implementation of the same protocol in schizophrenia patients may promote skills useful to reduce positive symptoms by means of EEG-neurofeedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF) uses feedback of the patient’s own brain activity to self-regulate brain networks which in turn could lead to a change in behaviour and clinical symptoms. The objective was to determine the effect of neurofeedback and motor training and motor training (MOT) alone on motor and non-motor functions in Parkinson’s disease (PD) in a 10-week small Phase I randomised controlled trial. Methods: 30 patients with PD (Hoehn & Yahr I-III) and no significant comorbidity took part in the trial with random allocation to two groups. Group 1 (NF: 15 patients) received rt-fMRI-NF with motor training. Group 2 (MOT: 15 patients) received motor training alone. The primary outcome measure was the Movement Disorder Society – Unified Parkinson’s Disease Rating Scale-Motor scale (MDS-UPDRS-MS), administered pre- and post-intervention ‘off-medication’. The secondary outcome measures were the ‘on-medication’ MDS-UPDRS, the Parkinson’s disease Questionnaire-39, and quantitative motor assessments after 4 and 10 weeks. Results: Patients in the NF group were able to upregulate activity in the supplementary motor area by using motor imagery. They improved by an average of 4.5 points on the MDS-UPDRS-MS in the ‘off-medication’ state (95% confidence interval: -2.5 to -6.6), whereas the MOT group improved only by 1.9 points (95% confidence interval +3.2 to -6.8). However, the improvement did not differ significantly between the groups. No adverse events were reported in either group. Interpretation: This Phase I study suggests that NF combined with motor training is safe and improves motor symptoms immediately after treatment, but larger trials are needed to explore its superiority over active control conditions. Clinical Trial website : Unique Identifier: NCT01867827 URL: https://clinicaltrials.gov/ct2/show/NCT01867827?term=NCT01867827&rank=1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose of review Recent developments in functional magnetic resonance imaging (fMRI) have catalyzed a new field of translational neuroscience. Using fMRI to monitor the aspects of task-related changes in neural activation or brain connectivity, investigators can offer feedback of simple or complex neural signals/patterns back to the participant on a quasireal-time basis [real-time-fMRI-based neurofeedback (rt-fMRI-NF)]. Here, we introduce some background methodology of the new developments in this field and give a perspective on how they may be used in neurorehabilitation in the future. Recent findings The development of rt-fMRI-NF has been used to promote self-regulation of activity in several brain regions and networks. In addition, and unlike other noninvasive techniques, rt-fMRI-NF can access specific subcortical regions and in principle any region that can be monitored using fMRI including the cerebellum, brainstem and spinal cord. In Parkinson’s disease and stroke, rt-fMRI-NF has been demonstrated to alter neural activity after the self-regulation training was completed and to modify specific behaviours. Summary Future exploitation of rt-fMRI-NF could be used to induce neuroplasticity in brain networks that are involved in certain neurological conditions. However, currently, the use of rt-fMRI-NF in randomized, controlled clinical trials is in its infancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite major progress, currently available treatment options for patients suffering from schizophrenia remain suboptimal. Antipsychotic medication is one such option, and is helpful in acute phases of the disease. However, antipsychotics cause significant side-effects that often require additional medication, and can even trigger the discontinuation of treatment. Taken together, along with the fact that 20-30% of patients are medication-resistant, it is clear that new medical care options should be developed for patients with schizophrenia. Besides medication, an emerging option to treat psychiatric symptoms is through the use of neurofeedback. This technique has proven efficacy for other disorders and, more importantly, has also proven to be feasible in patients with schizophrenia. One of the major advantages of this approach is that it allows for the influence of brain states that otherwise would be inaccessible; i.e. the physiological markers underlying psychotic symptoms. EEG resting-state microstates are a very interesting electrophysiological marker of schizophrenia symptoms. Precisely, a specific class of resting-state microstates, namely microstate class D, has consistently been found to show a temporal shortening in patients with schizophrenia compared to controls, and this shortening is correlated with the presence positive psychotic symptoms. Under the scope of biological psychiatry, appropriate treatment of psychotic symptoms can be expected to modify the underlying physiological markers accompanying behavioral manifestations of a disease. We reason that if abnormal temporal parameters of resting-state microstates seem to be related to positive symptoms in schizophrenia, regulating this EEG feature might be helpful as a treatment for patients. The goal of this thesis was to prove the feasibility of microstate class D contribution self-regulation via neurofeedback. Given that no other study has attempted to regulate microstates via neurofeedback, we first tested its feasibility in a population of healthy subjects. In the first paper we describe the methodological characteristics of the neurofeedback protocol and its implementation. Neurofeedback performance was assessed by means of linear mixed effects modeling, which provided a complete profile of the neurofeedback’s training response within and between-subjects. The protocol included 20 training sessions, and each session contained three conditions: baseline (resting-state) and two active conditions: training (auditory feedback upon self-regulation performance) and transfer (self-regulation with no feedback). With linear modeling we obtained performance indices for each of them as follows: baseline carryover (baseline increments time-dependent) and learning and aptitude for each of the active conditions. Learning refers to the increase/decrease of the microstate class D contribution, time-dependent during each active condition, and aptitude refers to the constant difference of the microstate class D contribution between each active condition and baseline independent of time. The indices provided are discussed in terms of tailoring neurofeedback treatment to individual profiles so that it can be applied in future studies or clinical practice. In our sample of participants, neurofeedback proved feasible, as all participants at least showed positive results in one of the aforementioned learning indices. Furthermore, between-subjects we observed that the contribution of microstate class D across-sessions increased by 0.42% during baseline, 1.93% during training trials, and 1.83% during transfer. This range is expected to be effective in treating psychotic symptoms in patients. In the second paper presented in this thesis, we explored the possible predictors of neurofeedback success among psychological variables measured with questionnaires. An interesting finding was the negative correlation between “motivational incongruence” and some of the neurofeedback performance indices. Even though this finding requires replication, we discuss it in terms of the interfering effects of incompatible psychological processes with neurofeedback training requirements. In the third paper, we present a meta-analysis on all available studies that have related resting-state microstate abnormalities and schizophrenia. We obtained medium effect sizes for two microstate classes, namely C and D. Combining the meta-analysis results with the fact that microstate class D abnormalities are correlated with the presence of positive symptoms in patients with schizophrenia, these results add further support for the training of this precise microstate. Overall, the results obtained in this study encourage the implementation of this protocol in a population of patients with schizophrenia. However, future studies will have to show whether patients will be able to successfully self-regulate the contribution of microstate class D and, if so, whether this regulation will have an impact on symptomatology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper investigates the role of the body in didactics. It looks up for points of contact between the functional sceneries of the classroom and some recent approaches, such like simplexity, neurosciences and enactivism. The two experiments presented they aim to demonstrate the importance of body awareness to improve the didactic quality. The first experience used a SenseWear Armband that provided data about the energetic expenditure of a teacher during diff erent activities in a lesson. Th e second experiment relied on a neurofeedback device integrated to a sensor, it detected body temperature with the aim of understanding the role of the body in the process of self-regulation-learning and management of attention and arousal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The article uses theoretical approaches as simplexity, neuroscience and enactivism to discuss everyday classroom activities. It tries to transpose the classical bipolar division between mind and body, through these approaches in cognitive science. Two experiments on the body’s role in teaching are presented to demonstrate the relevance of the awareness of the body, to improve performance in the classroom. The first experiment uses neurofeedback to measure the body temperature, as a means to understand the role of the body in self-regulation and control of the attention. The second uses a bracelet multi-sensor, which provides data on the energy spent by the teacher in daily activities in the classroom. Italian and Brazilian researchers cooperate in this experimental path of inclusive teaching, to be used in classes with children and adolescents with Attention Deficit Hyperactivity Disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The purpose of this study was to compare the effects of 2 exercise programs, segmental stabilization exercises (SSEs) and stretching of trunk and hamstrings muscles, on functional disability, pain, and activation of the transversus abdominis muscle (TrA), in individuals with chronic low back pain. Methods: A total of 30 participants were enrolled in this study and randomly assigned to 1 of 2 groups as a function of intervention. In the segmental stabilization group (SS), exercises focused on the TrA and lumbar multifidus muscles, whereas in the stretching group (ST), exercises focused on stretching the erector spinae, hamstrings, and triceps surae. Severity of pain (visual analog scale and McGill pain questionnaire) and functional disability (Oswestry disability questionnaire) and TrA muscle activation capacity (Pressure Biofeedback Unit, or PBU) were compared as a function of intervention. Interventions lasted 6 weeks, and sessions happened twice a week (30 minutes each). Analysis of variance was used for intergroup and intragroup comparisons. Results: As compared with baseline, both treatments were effective in relieving pain and improving disability (P < .001). Those in the SS group had significantly higher gains for all variables. The stretching group did not effectively activate the TrA (P = .94). Conclusion: Both techniques improved pain and reduced disability. In this study, SS was superior to muscular stretching for the measured variables associated with chronic low back pain. (J Manipulative Physiol Ther 2012;35:279-285)