953 resultados para NERVE REGENERATION
Resumo:
The purpose of this study was to assess whether the adhesive permits the collateral repair of axons originating from a vagus nerve to the interior of a sural nerve graft, and whether low-level laser therapy (LLLT) assists in the regeneration process. Study sample consisted of 32 rats randomly separated into three groups: Control Group (CG; n=8), from which the intact sural nerve was collected; Experimental Group (EG; n=12), in which one of the ends of the sural nerve graft was coapted to the vagus nerve using the fibrin glue; and Experimental Group Laser (EGL; n=12), in which the animals underwent the same procedures as those in EG with the addition of LLLT. Ten weeks after surgery, the animals were euthanized. Morphological analysis by means of optical and electron microscopy, and morphometry of the regenerated fibers were employed to evaluate the results. Collateral regeneration of axons was observed from the vagus nerve to the interior of the autologous graft in EG and EGL, and in CG all dimensions measured were greater and presented a significant difference in relation to EG and EGL, except for the area and thickness of the myelin sheath, that showed significant difference only in relation to the EG. The present study demonstrated that the fibrin glue makes axonal regeneration feasible and is an efficient method to recover injured peripheral nerves, and the use of low-level laser therapy enhances nerve regeneration.
Resumo:
BACKGROUND: Restoration of nerve continuity and effective maintenance of coaptation are considered fundamental principles of end-to-end peripheral nerve repair. OBJECTIVE: To evaluate the influence of the number of stitches on axonal regeneration and collagen production after neurorrhaphy. METHODS: Thirty male Wistar rats were equally divided into 3 groups and were all operated on with the right sciatic nerve exposed. In 2 groups, the nerve was sectioned and repaired by means of 3 (group B) or 6 (group C) epineurium sutures with 100 monofilament nylon. One group (group A) was used as a control. Each animal from groups B and C underwent electrophysiological evaluation with motor action potential recordings before nerve section and again at an 8-week interval after neurorrhaphy. Nerve biopsy specimens were used for histomorphometric assessment of axonal regeneration and quantification of collagen at the repair site. RESULTS: Animals from group C had significantly lower motor action potential conduction velocities compared with control animals (P = .02), and no significant difference was seen between groups B and C. Parameters obtained from morphometric evaluation were not significantly different between these 2 groups. Type I collagen and III collagen in the epineurium were significantly higher in group C than in either the control group (P = .001 and P = .003) or group B (P = .01 and P = .02). No differences were identified for collagen I and III in the endoneurium. CONCLUSION: Using 6 sutures for nerve repair is associated with worse electrophysiological outcomes and higher amounts of type I and III collagen in the epineurium compared with control. Neurorraphy with 6 stitches is also related to a significant increase in epineurium collagen I and III compared with 3-stitch neurorraphy.
Resumo:
Objective: This study seeks to determine, through functional gait assessment in different irradiation sites, the influence of a low-intensity GaAsAl laser beam on an injury caused by crushing the peroneal nerve in rats. Methods: 53 rats were used, which were divided into six groups: normal, injured and untreated, injured and treated using placebo, injured and treated in the bone marrow, injured and treated in the nerve, and injured and treated in both (nerve and bone marrow). The peroneal nerve was crushed using a pair of tweezers, and subsequently treated with laser for 28 consecutive days. The functional gait evaluation analyzed the footprints, which were recorded with a video camera on an acrylic bridge in the preoperative period, and on postoperative days 14, 21 and 28, and assessed using PFI formula software. Results: In the functional gait evaluation, significant differences were found only on postoperative day 14. Conclusion: Based on the functional gait evaluation, low-intensity GaAs AI irradiation was able to accelerate and reinforce the process of peripheral nerve regeneration in rats on postoperative day 14, both in the bone marrow- and in the nerve-treated groups.
Resumo:
Cell therapy constitutes a possibility for improving nerve regeneration, increasing the success of nerve repair. We evaluate the use of mononuclear cells in the regeneration of the sciatic nerve after axotomy followed by end-to-end neurorrhaphy. Forty adult male Wistar rats (250300 g) were divided into four groups: (1) sham, (2) neurorrhaphy: the sciatic nerve was sectioned and repaired using epineural sutures, (3) culture medium: after the suture, received an injection of 10 mu L of culture medium into the nerve, and (4) mononuclear cell: after the suture, a concentration of 3 X 10(6) of mononuclear cell was injected in epineurium region. Mononuclear cells were obtained from the bone marrow aspirates and separated by Ficoll-Hypaque method. The histological analyses were performed at the 4th postoperative day. The sciatic functional index, histological, and morphometric analyzes were used to evaluate nerve regeneration at the 6th postoperative week. Six rats were used for immunohistochemical analysis on the 4th postoperative day. In the group 4, on the fourth day, the histological analysis demonstrated a more accelerated degenerative process and an increase of the neurotrophic factors was observed. In the 6th week, all the morphometric results of the group 4 were statistically better compared with groups 2 and 3. There was a statistically significant improvement in the sciatic functional index for group 4 compared with groups 2 and 3. Mononuclear cells stimulated nerve regeneration, most probably by speeding up the Wallerian degeneration process as well as stimulating the synthesis of neurotrophic factors. Microsc. Res. Tech. 74:355-363, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
The development of scaffolds that combine the delivery of drugs with the physical support provided by electrospun fibres holds great potential in the field of nerve regeneration. Here it is proposed the incorporation of ibuprofen, a well-known non-steroidal anti-inflammatory drug, in electrospun fibres of the statistical copolymer poly(trimethylene carbonate-co-ε-caprolactone) [P(TMC-CL)] to serve as a drug delivery system to enhance axonal regeneration in the context of a spinal cord lesion, by limiting the inflammatory response. P(TMC-CL) fibres were electrospun from mixtures of dichloromethane (DCM) and dimethylformamide (DMF). The solvent mixture applied influenced fibre morphology, as well as mean fibre diameter, which decreased as the DMF content in solution increased. Ibuprofen-loaded fibres were prepared from P(TMC-CL) solutions containing 5% ibuprofen (w/w of polymer). Increasing drug content to 10% led to jet instability, resulting in the formation of a less homogeneous fibrous mesh. Under the optimized conditions, drug-loading efficiency was above 80%. Confocal Raman mapping showed no preferential distribution of ibuprofen in P(TMC-CL) fibres. Under physiological conditions ibuprofen was released in 24h. The release process being diffusion-dependent for fibres prepared from DCM solutions, in contrast to fibres prepared from DCM-DMF mixtures where burst release occurred. The biological activity of the drug released was demonstrated using human-derived macrophages. The release of prostaglandin E2 to the cell culture medium was reduced when cells were incubated with ibuprofen-loaded P(TMC-CL) fibres, confirming the biological significance of the drug delivery strategy presented. Overall, this study constitutes an important contribution to the design of a P(TMC-CL)-based nerve conduit with anti-inflammatory properties.
Resumo:
Unlike injury to the peripheral nervous system (PNS), where injured neurons can trigger a regenerative program that leads to axonal elongation and in some cases proper reinnervation, after injury to the central nervous system (CNS) neurons fail to produce the same response. The regenerative program includes the activation of several injury signals that will lead to the expression of genes associated with axonal regeneration. As a consequence, the spawned somatic response will ensure the supply of molecular components required for axonal elongation. The capacity of some neurons to trigger a regenerative response has led to investigate the mechanisms underlying neuronal regeneration. Thus, non-regenerative models (like injury to the CNS) and regenerative models (such as injury to the PNS) were used to understand the differences underlying those two responses to injury. To do so, the regenerative properties of dorsal root ganglion (DRG) neurons were addressed. This particular type of neurons possesses two branches, a central axon, that has a limited capacity to regenerate; and a peripheral axon, where regeneration can occur over long distances. In the first paradigm used to understand the neuronal regeneration mechanisms, we evaluated the activation of injury signals in a non-regenerative model. Injury signals include the positive injury signals, which are described as being enhancers of axonal regeneration by activating several transcription factors. The currently known positive injury signals are ERK, JNK and STAT3. To evaluate whether the lack of regeneration following injury to the central branch of DRG neurons was due to inactivation of these signals, activation of the transcription factors pELK-1, p-c-jun (downstream targets of ERK and JNK, respectively) and pSTAT3 were examined. Results have shown no impairment in the activation of these signals. As a consequence, we further proceed with evaluation of other candidates that could participate in axonal regeneration failure. By comparing the protein profiles that were triggered following either injury to the central branch of DRG neurons or injury to their peripheral branch, we were able to identify high levels of GSK3-β, ROCKII and HSP-40 after injury to the central branch of DRG neurons. While in vitro knockdown of HSP-40 in DRG neurons showed to be toxic for the cells, evaluation of pCRMP2 (a GSK3-β downstream target) and pMLC (a ROCKII downstream target), which are known to impair axonal regeneration, revealed high levels of both proteins following injury to the central branch when comparing with injury to their peripheral one. Altogether, these results suggest that activation of positive injury signals is not sufficient to elicit axonal regeneration; HSP-40 is likely to participate in the cell survival program; whereas GSK3-β and ROCKII activity may condition the regenerative capacity following injury to the nervous system.(...)
Resumo:
Peripheral nerve injury is a serious problem affecting significantly patients' life. Autografts are the "gold standard" used to repair the injury gap, however, only 50% of patients fully recover from the trauma. Artificial conduits are a valid alternative to repairing peripheral nerve. They aim at confining the nerve environment throughout the regeneration process, and providing guidance to axon outgrowth. Biocompatible materials have been carefully designed to reduce inflammation and scar tissue formation, but modifications of the inner lumen are still required in order to optimise the scaffolds. Biomicking the native neural tissue with extracellular matrix fillers or coatings showed great promises in repairing longer gaps and extending cell survival. In addition, extracellular matrix molecules provide a platform to further bind growth factors that can be released in the system over time. Alternatively, conduit fillers can be used for cell transplantation at the injury site, reducing the lag time required for endogenous Schwann cells to proliferate and take part in the regeneration process. This review provides an overview on the importance of extracellular matrix molecules in peripheral nerve repair.
Resumo:
Traumatic injuries resulting in peripheral nerve lesions often require a graft to bridge the gap. Although autologous nerve auto-graft is still the first-choice strategy in reconstructions, it has the severe disadvantage of the sacrifice of a functional nerve. Cell transplantation in a bioartificial conduit is an alternative strategy to create a favourable environment for nerve regeneration. We decided to test new fibrin nerve conduits seeded with various cell types (primary Schwann cells and adult stem cells differentiated to a Schwann cell-like phenotype) for repair of sciatic nerve injury. Two weeks after implantation, the conduits were removed and examined by immunohistochemistry for axonal regeneration (evaluated by PGP 9.5 expression) and Schwann cell presence (detected by S100 expression). The results show a significant increase in axonal regeneration in the group of fibrin seeded with Schwann cells compared with the empty fibrin conduit. Differentiated adipose-derived stem cells also enhanced regeneration distance in a similar manner to differentiated bone marrow mesenchymal stem cells. These observations suggest that adipose-derived stem cells may provide an effective cell population, without the limitations of the donor-site morbidity associated with isolation of Schwann cells, and could be a clinically translatable route towards new methods to enhance peripheral nerve repair.
Resumo:
After peripheral nerve injury in adult mammals, reestablishment of functional connections depends on several parameters including neurotrophic factors, the extracellular matrix, and hormones. However, little is known about the contribution of hormones to peripheral nerve regeneration. Thyroid hormones, which are required for the development and maturation of the central nervous system, are also important for the development of peripheral nerves. The action of triiodothyronine (T3) on responsive cells is mediated through nuclear thyroid hormone receptors (TRs) which modulate the expression of specific genes in target cells. Thus, to study the effect of T3, it is first necessary to know whether the target tissues possess TRs. The fact that sciatic nerve cells possess functional TRs suggests that these cells can respond to T3 and, as a consequence, that thyroid hormone may be involved in peripheral nerve regeneration. The silicone nerve guide model provides an excellent system to study the action of local administration of T3. Evidence from such studies demonstrate that animals treated locally with T3 at the level of transection have more complete regeneration of sciatic nerve and better functional recovery. Among the possible regulatory mechanisms by which T3 enhances peripheral nerve regeneration is rapid action on both axotomized neurons and Schwann cells which, in turn, produce a lasting and stimulatory effect on peripheral nerve regeneration. It is probable that T3 up- or down-regulates gene expression of one or more growth factors, extracellular matrix, or cell adhesion molecules, all of which stimulate peripheral nerve regeneration. This could explain the greater effect of T3 on nerve regeneration compared with the effect of any one growth factor or adhesion molecule.
Resumo:
OBJECTIVES/HYPOTHESIS: Facial nerve regeneration is limited in some clinical situations: in long grafts, by aged patients, and when the delay between nerve lesion and repair is prolonged. This deficient regeneration is due to the limited number of regenerating nerve fibers, their immaturity and the unresponsiveness of Schwann cells after a long period of denervation. This study proposes to apply glial cell line-derived neurotrophic factor (GDNF) on facial nerve grafts via nerve guidance channels to improve the regeneration. METHODS: Two situations were evaluated: immediate and delayed grafts (repair 7 months after the lesion). Each group contained three subgroups: a) graft without channel, b) graft with a channel without neurotrophic factor; and c) graft with a GDNF-releasing channel. A functional analysis was performed with clinical observation of facial nerve function, and nerve conduction study at 6 weeks. Histological analysis was performed with the count of number of myelinated fibers within the graft, and distally to the graft. Central evaluation was assessed with Fluoro-Ruby retrograde labeling and Nissl staining. RESULTS: This study showed that GDNF allowed an increase in the number and the maturation of nerve fibers, as well as the number of retrogradely labeled neurons in delayed anastomoses. On the contrary, after immediate repair, the regenerated nerves in the presence of GDNF showed inferior results compared to the other groups. CONCLUSIONS: GDNF is a potent neurotrophic factor to improve facial nerve regeneration in grafts performed several months after the nerve lesion. However, GDNF should not be used for immediate repair, as it possibly inhibits the nerve regeneration.
Resumo:
It is important to understand the mechanisms that enable peripheral neurons to regenerate after nerve injury in order to identify methods of improving this regeneration. Therefore, we studied nerve regeneration and sensory impairment recovery in the cutaneous lesions of leprosy patients (LPs) before and after treatment with multidrug therapy (MDT). The skin lesion sensory test results were compared to the histopathological and immunohistochemical protein gene product (PGP) 9.5 and the p75 nerve growth factor receptors (NGFr) findings. The cutaneous neural occupation ratio (CNOR) was evaluated for both neural markers. Thermal and pain sensations were the most frequently affected functions at the first visit and the most frequently recovered functions after MDT. The presence of a high cutaneous nerve damage index did not prevent the recovery of any type of sensory function. The CNOR was calculated for each biopsy, according to the presence of PGP and NGFr-immunostained fibres and it was not significantly different before or after the MDT. We observed a variable influence of MDT in the recovery from sensory impairment in the cutaneous lesions of LPs. Nociception and cold thermosensation were the most recovered sensations. The recovery of sensation in the skin lesions appeared to be associated with subsiding inflammation rather than with the regenerative activity of nerve fibres.
Resumo:
Present interventions to repair severed peripheral nerves provide slow and poor early axonal regeneration, which may cause unsatisfactory functional reinnervation. To improve early axonal regeneration in a 10 mm rat sciatic nerve gap model, we developed collagen nerve conduits loaded with the synergistically acting glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF). For controlling the concomitant GDNF and NGF release, the collagen tubes were cross-linked by a dehydro-thermal treatment (110 degrees C; 20 mbar; 5 days) prior to impregnating the tubes with GDNF and NGF and by coating drug-loaded tubes with layers of poly(lactide-co-glycolide). The conduits made of cross-linked collagen released low initial amounts of GDNF and NGF (2% of both during first 3 days) and enhanced significantly the early (2 weeks) nerve regeneration in terms of axonal outgrowth and Schwann cell migration in a 10 mm rat sciatic nerve gap model, as compared to the conduits made of non-cross-linked collagen releasing higher initial amounts of GDNF and NGF (12-16% within 3 days), or those releasing GDNF alone. The enhancement of early axonal regeneration using controlled co-delivery of multiple synergistic neurotrophic factors is an important requisite for eventually establishing functional connections with the target organ.
Resumo:
It has been already demonstrated that thyroid hormone (T3) is one of the most important stimulating factors in peripheral nerve regeneration. We have recently shown that local administration of T3 in silicon tubes at the level of the transected rat sciatic nerve enhanced axonal regeneration and improved functional recovery. Silicon, however, cannot be used in humans because it causes a chronic inflammatory reaction. Therefore, in order to provide future clinical applications of thyroid hormone in human peripheral nerve lesions, we carried out comparative studies on the regeneration of transected rat sciatic nerve bridged either by biodegradable P(DLLA-(-CL) or by silicon nerve guides, both guides filled with either T3 or phosphate buffer. Our macroscopic observation revealed that 85% of the biodegradable guides allowed the expected regeneration of the transected sciatic nerve. The morphological, morphometric and electrophysiological analysis showed that T3 in biodegradable guides induces a significant increase in the number of myelinated regenerated axons (6862 +/- 1831 in control vs. 11799 +/- 1163 in T3-treated). Also, T3 skewed the diameter of myelinated axons toward larger values than in controls. Moreover, T3 increases the compound muscle action potential amplitude of the flexor and extensor muscles of the treated rats. This T3 stimulation in biodegradable guides was equally well to that obtained by using silicone guides. In conclusion, the administration of T3 in biodegradable guides significantly improves sciatic nerve regeneration, confirming the feasibility of our technique to provide a serious step towards future clinical application of T3 in human peripheral nerve injuries.
Resumo:
Peripheral neurons can regenerate after axotomy; in this process, the role of cytoskeletal proteins is important because they contribute to formation and reorganization, growth, transport, stability and plasticity of axons. In the present study, we examined the effects of thyroid hormones (T3) on the expression of major cytoskeletal proteins during sciatic nerve regeneration. At various times after sciatic nerve transection and T3 local administration, segments of operated nerves from T3-treated rats and control rats were examined by Western blotting for the presence of neurofilament, tubulin and vimentin. Our results revealed that, during the first week after surgery, T3 treatment did not significantly alter the level of NF subunits and tubulin in the different segments of operated nerves compared to control nerves. Two or 4 weeks after operation, the concentration of NF-H and NF-M isoforms was clearly increased by T3 treatment. Moreover, under T3-treatment, NF proteins appeared more rapidly in the distal segment of operated nerves. Likewise, the levels of betaIII, and of acetylated and tyrosinated tubulin isotypes, were also up-regulated by T3-treatment during regeneration. However, only the tyrosinated tubulin form appeared earlier in the distal nerve segments. At this stage of regeneration, T3 had no effect on the level of vimentin expression. In conclusion, thyroid hormone improves and accelerates peripheral nerve regeneration and exerts a positive effect on cytoskeletal protein expression and transport involved in axonal regeneration. These results help us to understand partially the mechanism by which thyroid hormones enhance peripheral nerve regeneration. The stimulating effect of T3 on peripheral nerve regeneration may have considerable therapeutic potential.