264 resultados para NEOVASCULARIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is a major pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most potent natural angiogenesis inhibitor. In this study, the regulatory role of bone marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial differentiation potential, VEGF/PEDF production and responses to pro-angiogenic and hypoxic conditions. The in vivo regulation of blood vessel formation by BMSCs was also explored in a SCID mouse model. Results showed that PEDF was expressed more prominently in BMSCs compared to VEGF. This contrasted with human umbilical vein endothelial cells (HUVECs) where the expression of VEGF was higher than that of PEDF. The ratio of VEGF/PEDF gene expression in BMSCs increased when VEGF concentration reached 40 ng/ml in the culture medium, but decreased at 80 ng/ml. Under CoCl2- induced hypoxic conditions, the VEGF/PEDF ratio of BMSCs increased significantly in both normal and angiogenic culture media. There was no expression of endothelial cell markers in BMSCs cultured in either pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in vivo study showed that VEGF/PEDF expression closely correlated with the degree of neovascularization, and that hypoxia significantly induced pro-angiogenic activity in BMSCs. These results indicate that, rather than being progenitors of endothelial cells, BMSCs play an important role in regulating the neovascularization process, and that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro- or antiangiogenic activities of BMSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-affinity 67-kd laminin receptor (67LR) is expressed by proliferating endothelial cells during retinal neovascularization. The role of 67LR has been further examined experimentally by administration of selective 67LR agonists and antagonists in a murine model of proliferative retinopathy. These synthetic 67LR ligands have been previously shown to stimulate or inhibit endothelial cell motility in vitro without any direct effect on proliferation. In the present study, a fluorescently labeled 67LR antagonist (EGF33–42) was injected intraperitoneally into mice and its distribution in the retina was assessed by confocal scanning laser microscopy. Within 2 hours this peptide was localized to the retinal vasculature, including preretinal neovascular complexes, and a significant amount had crossed the blood retinal barrier. For up to 24 hours postinjection, the peptide was still present in the retinal vascular walls and, to a lesser extent, in the neural retina. Non-labeled EGF33–42 significantly inhibited pre-retinal neovascularization in comparison to controls treated with phosphate-buffered saline or scrambled peptide (P <0.0001). The agonist peptide (Lamß1925–933) also significantly inhibited proliferative retinopathy; however, it caused a concomitant reduction in retinal ischemia in this model by promoting significant revascularization of the central retina (P <0.001). Thus, 67LR appears to be an important target receptor for the modulation of retinal neovascularization. Agonism of this receptor may be valuable in reducing the hypoxia-stimulated release of angiogenic growth factors which drives retinal angiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was undertaken to test whether inhibition of the proangiogenic inflammatory cytokine tumor necrosis factor (TNF)-alpha can modulate retinal hypoxia and preretinal neovascularization in a murine model of oxygen-induced retinopathy (OIR). OIR was produced in TNF-alpha-/- and wild-type (WT) control C57B6 neonatal mice by exposure to 75% oxygen between postnatal days 7 and 12 (P7 to P12). Half of each WT litter was treated with the cytokine inhibitor semapimod (formerly known as CNI-1493) (5 mg/kg) by daily intraperitoneal injection from the time of reintroduction to room air at P12 until P17. The extent of preretinal neovascularization and intraretinal revascularization was quantified by image analysis of retinal flat-mounts and retinal hypoxia correlated with vascularization by immunofluorescent localization of the hypoxia-sensitive drug pimonidazole (hypoxyprobe, HP). HP adducts were also characterized by Western analysis and quantified by competitive enzyme-linked immunosorbent assay. TNF-alpha-/- and WT mice showed a similar sensitivity to hyperoxia-induced retinal ischemia at P12. At P13 some delay in early reperfusion was evident in TNFalpha-/- and WT mice treated with semapimod. However, at P17 both these groups had significantly better vascular recovery with less ischemic/hypoxic retina and preretinal neovascularization compared to untreated retinopathy in WT mice. Immunohistochemistry showed deposition of HP in the avascular inner retina but not in areas underlying preretinal neovascularization, indicating that such aberrant vasculature can reduce retinal hypoxia. Inhibition of TNF-alpha significantly, improves vascular recovery within ischemic tissue and reduces pathological neovascularization in OIR. HP provides a useful tool for mapping and quantifying tissue hypoxia in experimental ischemic retinopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate the association of cardiovascular risk factors and inflammatory markers with neovascular age-related macular degeneration (AMD). Design: Cross-sectional case-control study. Participants: Of the 410 of the =65-year-old community sample invited to attend, 205 participated (50% response rate). Of the 215 clinic attendees who were invited to participate, 212 agreed to take part (98% response rate). A diagnosis of neovascular AMD in at least one eye was made in 193 clinic attendees and 2 of the community sample. Methods: Clinic and community participants underwent a detailed ophthalmic examination with fundus imaging, were interviewed for assessment of putative risk factors, and provided a blood sample. Analysis included levels of serum lipids, intercellular adhesion molecule 1 (ICAM), vascular cellular adhesion molecule (VCAM), and C-reactive protein (CRP). All participants were classified by fundus image grading on the basis of the eye with more severe AMD features. Main Outcome Measure: Neovascular AMD. Results: There were 195 participants with choroidal neovascularization in at least one eye, 97 nonneovascular AMD participants, and 115 controls (no drusen or pigmentary irregularities in either eye). In confounder-adjusted logistic regression, a history of cardiovascular disease was strongly associated with neovascular AMD (odds ratio [OR], 7.53; 95% confidence interval [CI], 2.78-20.41). Cigarette smoking (OR, 3.71; 95% CI, 1.25-11.06), being in the highest quartile of body mass index (OR, 3.82; 95% CI, 1.22-12.01), stage 2 hypertension (OR, 3.21; 95% CI, 1.14-8.98), and being in the highest quartile of serum cholesterol (OR, 4.66; 95% CI, 1.35-16.13) were positively associated with neovascular AMD. There was no association between AMD status and serum CRP, ICAM, or VCAM. Conclusions: Our results suggest that cardiovascular disease plays an etiological role in the development of choroidal neovascularization in a proportion of older adults and highlight the importance of control of blood pressure and cholesterol, avoidance of smoking, and maintenance of a normal body weight. © 2008 American Academy of Ophthalmology.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We produced choroidal neovascularization in the rhesus monkey by diminishing the blood supply to the inner retina and producing defects in Bruch's membrane by photocoagulation. The neovascular fronds which developed either infiltrated the subretinal space or proliferated through necrotic and gliotic retina into the vitreous cavity. Sequential electron microscopic sections of neovascular fronds in the subretinal space demonstrated that the advancing capillary sprouts were composed of primitive endothelial tubes surrounded by pericytes and enmeshed in a loose basement-membrane-like substance. More mature capillaris and displayed endothelial fenestrations and endothelial-pericyte membranous contacts. Large neovascular fronds developed major feeding vessels that closely resembled normal small choroidal arteries and veins. Retinal pigment epithelial cells in various guises were in constant association with proliferating neovascular networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We induced choroidal neovascularization in the rhesus monkey by impoverishing the blood supply to the inner retina and producing defects in Bruch's membrane by photocoagulation. Fourteen of 46 eyes undergoing photocoagulation developed neovascular fronds which were identified and categorized by histopathologic examination and fluorescein angiography. All new vessels gained access to the retina through defects in Bruch's membrane at the site of photocoagulation marks. In eight eyes the new vessels remained localized to the immediate vicinity of photocoagulation marks. In four eyes neovascular fronds infiltrated the subretinal space for distances up to 6 disk diameters from the point of entry into the retina. In the two eyes choroidovitreal neovascular complexes developed but rapidly regressed shortly after gaining the vitreous cavity. Fluorescein angiography demonstrated that all neovascular fronds were grossly incompetent to dye but that formed feeding channels had some degree of integrity. Light microscopic studies showed the proliferating networks to be composed of capillaries with well-formed basement membranes and more mature vessels with the basic structure of choroidal arteries and veins.