58 resultados para NEBULIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Advances in nebulizer design have produced both ultrasonic nebulizers and devices based on a vibrating mesh (vibrating mesh nebulizers), which are expected to enhance the efficiency of aerosol drug therapy. The aim of this study was to compare 4 different nebulizers, of 3 different types, in an in vitro model using albuterol delivery and physical characteristics as benchmarks. METHODS: The following nebulizers were tested: Sidestream Disposable jet nebulizer, Multisonic Infra Control ultrasonic nebulizer, and the Aerogen Pro and Aerogen Solo vibrating mesh nebulizers. Aerosol duration, temperature, and drug solution osmolality were measured during nebulization. Albuterol delivery was measured by a high-performance liquid chromatography system with fluorometric detection. The droplet size distribution was analyzed with a laser granulometer. RESULTS: The ultrasonic nebulizer was the fastest device based on the duration of nebulization; the jet nebulizer was the slowest. Solution temperature decreased during nebulization when the jet nebulizer and vibrating mesh nebulizers were used, but it increased with the ultrasonic nebulizer. Osmolality was stable during nebulization with the vibrating mesh nebulizers, but increased with the jet nebulizer and ultrasonic nebulizer, indicating solvent evaporation. Albuterol delivery was 1.6 and 2.3 times higher with the ultrasonic nebulizer and vibrating mesh nebulizers devices, respectively, than with the jet nebulizer. Particle size was significantly higher with the ultrasonic nebulizer. CONCLUSIONS: The in vitro model was effective for comparing nebulizer types, demonstrating important differences between nebulizer types. The new devices, both the ultrasonic nebulizers and vibrating mesh nebulizers, delivered more aerosolized drug than traditional jet nebulizers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new-generation nebulizers are commonly used for the administration of salbutamol in mechanically ventilated patients. The different modes of administration and new devices have not been compared. We developed a liquid chromatography-tandem mass spectrometry method for the determination of concentrations as low as 0.05 ng/mL of salbutamol, corresponding to the desired plasma concentration after inhalation. Salbutamol quantification was performed by reverse-phase HPLC. Analyte quantification was performed by electrospray ionization-triple quadrupole mass spectrometry using selected reaction monitoring detection ESI in the positive mode. The method was validated over concentrations ranging from 0.05 to 100 ng/mL in plasma and from 0.18 to 135 ng/mL in urine. The method is precise, with mean inter-day coefficient of variation (CV%) within 3.1-8.3% in plasma and 1.3-3.9% in urine, as well as accurate. The proposed method was found to reach the required sensitivity for the evaluation of different nebulizers as well as nebulization modes. The present assay was applied to examine whether salbutamol urine levels, normalized with the creatinine levels, correlated with the plasma concentrations. A suitable, convenient and noninvasive method of monitoring patients receiving salbutamol by mechanical ventilation could be implemented. Copyright © 2011 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study was designed to investigate the impact of air pollution on monthly inhalation/nebulization procedures in Ribeirao Preto, Sao Paulo State, Brazil, from 2004 to 2010. To assess the relationship between the procedures and particulate matter (PM10) a Bayesian Poisson regression model was used, including a random factor that captured extra-Poisson variability between counts. Particulate matter was associated with the monthly number of inhalation/nebulization procedures, but the inclusion of covariates (temperature, precipitation, and season of the year) suggests a possible confounding effect. Although other studies have linked particulate matter to an increasing number of visits due to respiratory morbidity, the results of this study suggest that such associations should be interpreted with caution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study was designed to investigate the impact of air pollution on monthly inhalation/nebulization procedures in Ribeirão Preto, São Paulo State, Brazil, from 2004 to 2010. To assess the relationship between the procedures and particulate matter (PM10) a Bayesian Poisson regression model was used, including a random factor that captured extra-Poisson variability between counts. Particulate matter was associated with the monthly number of inhalation/nebulization procedures, but the inclusion of covariates (temperature, precipitation, and season of the year) suggests a possible confounding effect. Although other studies have linked particulate matter to an increasing number of visits due to respiratory morbidity, the results of this study suggest that such associations should be interpreted with caution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soft ionization methods for the introduction of labile biomolecules into a mass spectrometer are of fundamental importance to biomolecular analysis. Previously, electrospray ionization (ESI) and matrix assisted laser desorption-ionization (MALDI) have been the main ionization methods used. Surface acoustic wave nebulization (SAWN) is a new technique that has been demonstrated to deposit less energy into ions upon ion formation and transfer for detection than other methods for sample introduction into a mass spectrometer (MS). Here we report the optimization and use of SAWN as a nebulization technique for the introduction of samples from a low flow of liquid, and the interfacing of SAWN with liquid chromatographic separation (LC) for the analysis of a protein digest. This demonstrates that SAWN can be a viable, low-energy alternative to ESI for the LC-MS analysis of proteomic samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International audience

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of a malaria DNA vaccine is presented. A 40 kHz ultrasonic atomization device was used to create the microparticles from a feedstock containing 5 volumes of 0.5% w/v PLGA in acetone and 1 volume of condensed DNA which was fed at a flow rate of 18ml h-1. The plasmid DNA vectors encoding a malaria protein were condensed with a cationic polymer before atomization. Results High levels of gene expression in vitro were observed in COS-7 cells transfected with condensed DNA at a nitrogen to phosphate (N/P) ratio of 10. At this N/P ratio, the condensed DNA exhibited a monodispersed nanoparticle size (Z-average diameter of 60.8 nm) and a highly positive zeta potential of 38.8mV. The microparticle formulations of malaria DNA vaccine were quality assessed and it was shown that themicroparticles displayed high encapsulation efficiencies between 82-96% and a narrow size distribution in the range of 0.8-1.9 μm. In vitro release profile revealed that approximately 82% of the DNA was released within 30 days via a predominantly diffusion controlledmass transfer system. Conclusions This ultrasonic atomization technique showed excellent particle size reproducibility and displayed potential as an industrially viable approach for the formulation of controlled release particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An effective means of facilitating DNA vaccine delivery to antigen presenting cells is through biodegradable microspheres. Microspheres offer distinct advantages over other delivery technologies by providing release of DNA vaccine in its bioactive form in a controlled fashion. In this study, biodegradable poly(D,L-lactide-coglycolide) (PLGA) microspheres containing polyethylenimine (PEI) condensed plasmid DNA (pDNA) were prepared using a 40 kHz ultrasonic atomization system. Process synthesis parameters, which are important to the scale-up of microspheres that are suitable for nasal delivery (i.e., less than 20 μm), were studied. These parameters include polymer concentration; feed flowrate; volumetric ratio of polymer and pDNA-PEI (plasmid DNA-polyethylenimine) complexes; and nitrogen to phosphorous (N/P) ratio. PDNA encapsulation efficiencies were predominantly in the range 82-96%, and the mean sizes of the particle were between 6 and 15 μm. The ultrasonic synthesis method was shown to have excellent reproducibility. PEI affected morphology of the microspheres, as it induced the formation of porous particles that accelerate the release rate of pDNA. The PLGA microspheres displayed an in vitro release of pDNA of 95-99% within 30 days and demonstrated zero order release kinetics without an initial spike of pDNA. Agarose electrophoresis confirmed conservation of the supercoiled form of pDNA throughout the synthesis and in vitro release stages. It was concluded that ultrasonic atomization is an efficient technique to overcome the key obstacles in scaling-up the manufacture of encapsulated vaccine for clinical trials and ultimately, commercial applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC) to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. Methods: The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD), were measured at different driving pressures (4-7 bar). Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. Results: The nebulization system produced relatively large amounts of aerosol ranging between 0.3 +/- 0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0 +/- 0.1 ml/min for distilled water (H(2)Od) at 6 bar, with MMADs between 2.61 +/- 0.1 mu m for PFD at 7 bar and 10.18 +/- 0.4 mu m for FC-75 at 6 bar. The deposition study showed that for surfactant and H(2)Od aerosols, the highest percentage of the aerosolized mass (similar to 65%) was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH(2)O only increased total airway pressure by 1.59 cmH(2)O at the highest driving pressure (7 bar). Conclusion: This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文分为两部分:1. 综述部分(第一章和第二章),评述了悬浮进样方式在电感耦合等离子体发射光谱法(ICP-OES)中的研究与应用;电感耦合等离子体质谱(ICP-MS)中碰撞/反应池技术研究的新进展。2. 实验部分(第三章至第九章),内容包括针对不同性质的样品悬浮液选择适当的稳定剂和悬浮雾化ICP-OES的校准方法研究;以混合碰撞/反应气体解决难度较大的高纯氧化钕中稀土杂质测定的干扰问题;以及浊点萃取-石墨炉原子吸收法测定环境样品中痕量镉、氢化物发生-原子荧光光谱法测定铅基合金中砷和植物样品中锗等实用性强的分析方法研究。 ICP的传统进样方式是将样品转化成水溶液形式,以溶液方式进样。然而大多数样品是以固态形式存在,许多样品相当难溶或难熔。采用直接固体进样方法对这些样品进行分析,是分析工作者追求的目标之一。悬浮液进样是一种固体直接进样方法,除了具有其它固体进样技术的优点外,其最大优点是可以像溶液雾化一样用标准水溶液校准。本研究针对实际分析工作中遇到的具体样品,对悬浮进样ICP-OES技术进行了比较深入的研究,成功解决了样品处理繁琐和样品难以处理等困难。对特殊地质样品和激光晶体材料(Nd:YAG)的悬浮进样分析进行了探索。主要工作为:①建立分析地质样品中主量和微量元素的方法,标准水溶液可以成功地用于校准。优点是可以同时对地质样品中的Si和其它元素进行分析,避免了传统分析时需分别处理样品的麻烦。②探索了分析铌钽矿中铌和钽的应用。由于铌和钽具有强抗化学腐蚀性,所以溶液进样分析时样品处理过程复杂。结果表明,以标准水溶液校准时,只要样品研磨时间延长至5 h,即可获得悬浮进样的满意的回收率。③研究了分析掺钕钇铝石榴石(Nd:YAG)中钕掺杂量的可行性。研究表明,加入适量聚丙烯酸作分散剂并调节pH为6,可以得到稳定悬浮液;以通用标准加入法(GSAM)校准可以得到满意的结果。 我国的稀土资源占世界的80%以上,高纯稀土氧化物是高科技领域中的重要材料。碰撞/反应池技术是目前四极杆ICP-MS消除干扰的先进技术,可以选择性地减少某些基体干扰,使背景和检测限得到显著的改进。本实验选择氧化钕(有7个同位素)作为研究对象,采用碰撞/反应池技术重点解决四极杆ICP-MS方法对高纯Nd2O3中稀土杂质进行测定时,基体Nd对Tb、Dy和Ho严重的氧化物或氢氧化物干扰难题。研究结果如下:①在四极杆高分辨率模式下,可以消除Nd对Pr的相邻峰的拖尾干扰;②采用碰撞/反应池技术,设计了10% O2-10% Ar-80% He混合气体作为碰撞/反应气,将Tb、Dy和Ho分别转化为相应的氧化物离子进行测定,成功地消除了基体Nd对Ho的干扰;Nd对Tb和Dy造成干扰的表观浓度显著降低。本方法可直接测定纯度为6N的高纯Nd2O3中的Ho;对纯度为6N的高纯Nd2O3中的Tb和Dy进行扣除,可以分析纯度达5N的高纯Nd2O3中的Tb和Dy。与文献报道的其它消除基体Nd干扰的方法相比较,此方法能够对纯度更高的Nd2O3进行直接分析,且操作简便。此方法也可进一步拓宽,有望解决其它轻稀土氧化物对中重稀土检测的质谱干扰问题。 论文的7~9章的工作包括:浊点萃取-GFAAS测定环境样品中痕量镉、HG-AFS分析铅基合金中砷和植物样品中锗的研究。针对实际分析工作中的具体困难,以上工作分别解决了分析元素含量低、测定干扰严重及样品处理的问题,建立了实用性强、准确度高的分析方法,具有实际应用价值。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of Nb and Ta in Nb-Ta minerals was accomplished by slurry nebulization inductively coupled plasma optical emission spectrometry (ICP-OES), using a clog-free V-groove ceramic nebulizer. Samples were first wet-ground to appropriate particle sizes with narrow size distribution and 90% of the particles in the slurry were smaller than 2.32 mu m in diameter. Subsamples were then dispersed in pH 9 aqueous solutions, and agitated in an ultrasonic bath for 15 min prior to analysis. Due to the lack of slurry standards matching well with the samples, calibration was simply carried out using aqueous solution standards. Results were compared with those obtained from a conventional fusion decomposition procedure and acid digestion procedures and a good agreement between the measured and referred values was obtained. The technique provided a good alternative for the rapid determination of Nb and/or Ta in their corresponding minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two Meinhard microconcentric nebulizers, model AR30-07-FM02 and AR 30-07-FM005, were employed as a self-installed micro-sampling system for inductively coupled plasma-mass spectrometry (ICP-MS). The FM02 nebulizer at 22 muL/min of solution uptake rate gave the relative standard deviations of 7.6%, 3.0%, 2.7%, 1.8% for determinations (n = 10) of 20 mug/L Be, Co, In and Bi, respectively, and the detection limits (3s) of 0.14, 0.10, 0.02 and 0.01 mug/L for Be, Co In and Bi, respectively. The mass intensity of In-115 obtained by this micro-sampling system was 60% of that by conventional pneumatic nebulizer system at 1.3 mL/min. The analytical results for La, Ce, Pr and Nd in 20 muL Wistar rat amniotic fluid obtained by the present micro-sampling system were precisely in good agreement with those obtained using conventional pneumatic nebulization system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matrix effects in now injection (FI) inductively coupled plasma mass spectrometry has been studied,and the results have been compared with those of continuous nebulization. The matrix element As and nu with higher ionization potential ( > 9eV) have enhancement effect on the analyte signal,and the heavier the analyte mass, the smaller the enhancement effects by Fl. The matrix elements Cu, In, Li, Na and Pb with lower ionization potential have suppression effect on the analyte signal. The heavier the matrix element mass, the more severe the suppression effects. The heavier the analyte mass, the smaller the suppression effects. The higher ionization potential of analyte, the more severe the suppression effects. Compared with continuous nebulization, the degree of suppression effect is smaller and the degree of the enhancement effect is larger by Fl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matrix effects arising from ethanol, propanol, glycerol, acetic acid, ethylenediamine and triethanolamine in inductively coupled plasma mass spectrometry have been studied. Addition of ethanol, propanol, glycerol, acetic acid, ethylenediamine and triethanolamine into solution has an enhancement effect on the signal intensity of analyte with ionization potential between 9 and 11 eV. The ethylenediamine and triethanolamine have higher enhancement effect on the signal intensity of Hg than that of ethanol, propanol, glycerol and acetic acid. Addition of ethylenediamine and triethanolamine into solution has a suppression effect on the signal intensity of Ph and Sr. The mechanism of the enhancement or suppression was investigated. The signal enhancement of Hg in the presence of ethylenediamine and triethanolamine is not caused by improved degree of ionization of Hg and nebulization efficiency. The suppression effects of Ph and Sr in the presence of ethylenediamine and triethanolamine are due to decrease of atomization efficiency of these elements. A method for the determination of Hg in the biological standard samples Ly ICP-MS was developed.