966 resultados para NE Atlantic
Resumo:
Sampling by the continuous plankton recorder (CPR) survey over the North Atlantic Ocean and the North Sea has enabled long-term studies of phytoplankton biomass. Analysis of an index of phytoplankton biomass, the phytoplankton colour index (PCI), has previously shown an increase in phytoplankton biomass in the NE Atlantic. In the current study, further investigations were conducted to determine the contribution of diatom and dinoflagellate cell counts to the PCI, their fluctuations over the last 45 yr and their geographical variations in the eastern North Atlantic and the North Sea. An increased contribution of dinoflagellates to the PCI was revealed over the south NE Atlantic and the northern North Sea. In contrast, the contribution of diatoms decreased in the north NE Atlantic and the northern North Sea. No discernible trends were found in the other regions of the North Sea. The relative contributions of diatoms and dinoflagellates to the PCI led to the identification of 3 geographically distinct dynamic regimes in the diatom/dinoflagellate dynamics in the NE Atlantic and the North Sea. Finally, it is stressed that the discrepancy observed in the patterns of PCI and diatom and dinoflagellate cell counts suggests that changes in PCI do not reflect changes in the community structure and that the exclusive use of PCI is not adequate to investigate the long-term trends in the trophic link between phytoplankton and herbivorous zooplankton.
Bacteria in the cold deep-sea benthic boundary layer and sediment-water interface of the NE Atlantic
Long-term changes in abundance and distribution of microzooplankton in the NE Atlantic and North Sea
Resumo:
Long-term changes in mesozooplankton and phytoplankton populations have been well documented in the North Atlantic region, whereas data for microzooplankton are scarce. This neglected component of the plankton is a vital link in marine food-webs, grazing on smaller flagellates and cyanobacteria and in turn providing food for the larger mesozooplankton. We use the latest tintinnid (Ciliophora, Protista) data from the Continuous Plankton Recorder (CPR) survey in the NE Atlantic and North Sea to examine the phenology, distribution and abundance of this important group of ciliates. Presence/absence data came from 167 122 CPR samples collected between 1960 and 2009 and abundance data from 49 662 samples collected between 1996 and 2009. In the North Atlantic the genus Dictyocysta spp. dominated and Parafavella gigantea showed an increase in abundance around Iceland and Greenland. In the North Sea higher densities of Tintinnopsis spp., Favella serrata and Ptychocylis spp. were found. The presence of tintinnids in CPR samples collected in the North Atlantic has increased over the last 50 years and the seasonal window of high abundance has lengthened. Conversely in the North Sea there has been an overall reduction in abundance. We discuss possible drivers for these long-term changes and point the way forward to more holistic studies that examine how ecosystems, rather than just selected taxa, are responding to climate change.
Prey landscapes help identify potential foraging habitats for leatherback turtles in the NE Atlantic
Resumo:
Identifying key marine megavertebrate habitats has become ever more important as concern increases regarding global fisheries bycatch and accelerated climate change. This will be aided by a greater understanding of the patterns and processes determining the spatiotemporal distribution of species of conservation concern. We identify probable foraging grounds for leatherback turtles in the NE Atlantic using monthly landscapes of gelatinous organism distribution constructed from Continuous Plankton Recorder Survey data. Using sightings data (n = 2013 records, 1954 to 2003) from 9 countries (UK, Ireland, France, Belgium, The Netherlands, Denmark, Germany, Norway and Sweden), we show sea surface temperatures of approximately 10 to 12 degree C most likely indicate the lower thermal threshold for accessible habitats during seasonal foraging migrations to high latitudes. Integrating maps of gelatinous plankton as a possible indicator of prey distribution with thermal tolerance parameters demonstrates the dynamic (spatial and temporal) nature of NE Atlantic foraging habitats. We highlight the importance of body size- related thermal constraints in structuring leatherback foraging populations and demonstrate a latitudinal gradient in body size (Bergmann's rule) where smaller animals are excluded from higher latitude foraging areas. We highlight the marine area of the European continental shelf edge as being both thermally accessible and prey rich, and therefore potentially supporting appreciable densities of foraging leatherbacks, with some suitable areas not yet extensively surveyed.