957 resultados para NB-MO


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variation of the interdiffusion coefficient with the change in composition in the Nb-Mo system is determined in the temperature range of 1800 °C to 1900 °C. It was found that the activation energy has a minimum at around 45 at. pct Nb. The values of the pre-exponential factor and the activation energy for diffusion are compared with the data available in the literature. Further, the impurity diffusion coefficients of Nb in Mo and Mo in Nb are calculated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In view of the importance of the suicides in the high temperature applications, the diffusion behaviour is compared in different systems for two types of silicides, XSi2 and X5Si3 (X=Nb, Mo, V). Atomic mechanism of diffusion and defects present in the structure are discussed. In both the phases, Si has faster diffusion rate than the metal species. This is expected from the nearest neighbour (NN) bonds present in the XSi2 phase but rather unusual in the X5Si3 phase. Relative mobilities of the species calculated indicate the presence of high concentration of Si antisites. Moreover, the concentration of the defects is different in different systems to find different diffusion rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion couple technique is used to study interdiffusion in Nb-Mo, Nb-Ti and Nb-Zr systems. Interdiffusion coefficients at different temperatures and compositions are determined using the relation developed by Wagner. The change in activation energy for interdiffusion with composition is determined. Further, impurity diffusion coefficient of the species are determined and compared with the available data in literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The seeded infiltration and growth (SIG) technique offers near-net shape processing of bulk superconductors with significant improvement in reduced Y2BaCuO5 (Y-211) inclusion size, reduced shrinkage, reduced porosity and improved current density compared to samples fabricated by top seeded melt growth (TSMG). Y2Ba4CuMOy phases where M=Nb, Mo, W, Ta, etc., have been shown to form nano-scale inclusions in the YBa2Cu3Oy (Y-123) phase matrix and to contribute to enhanced magnetic flux pinning in these materials. In this paper, we describe the introduction of Y2Ba 4CuWOy nano-scale inclusions into bulk superconductors processed by the seeded infiltration growth process. Critical current density, Jc, in excess of 105 A/cm2 at 77 K in self-field is observed for samples containing Y2Ba 4CuWOy. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogenation reactions at transition metal surfaces comprise a key set of reactions in heterogeneous catalysis. In this paper, density functional theory methods are employed to take an in-depth look at this fundamental reaction type. The energetics of hydrogenation of atomic C, N, and O have been studied in some detail over low index Zr, Nb, Mo, Tc, Ru, Rh, and Pd surfaces. Detailed bonding analysis has also been employed to track carefully the chemical changes taking place during reaction. A number of interesting horizontal and vertical trends have been uncovered relating to reactant valency and metal d-band filling. A general correlation has also been found between the reaction barriers and the reaction potential energies. Moreover, when each reaction is considered independently, correlation has been found to improve with decreasing reactant valency. Bonding analysis has pointed to this being related to the relative position of the transition state along the reaction coordinate and has shown that as reactant valency decreases, the transition states become progressively later.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Na região de Nisa, concelho de Portalegre, situa-se um dos maiores e mais relevantes jazigos de urânio alguma vez descoberto em território nacional. Trata-se de um jazigo ainda inexplorado que encerra um potencial estimado em cerca de 32 milhões de toneladas de minério tal qual. Este jazigo ocorre à superfície e encontra-se em contexto metassedimentar embutido em xistos mosqueados, pertencentes ao Grupo das Beiras, nas proximidades do contacto com o granito do Maciço de Nisa. Este trabalho tem como objetivo estudar de forma qualitativa e quantitativa a dispersão geoquímica provocada por processos naturais de erosão e de transporte hidrogravítico na envolvente à anomalia geoquímica natural localmente induzida por este jazigo. Para o efeito estabeleceu-se uma metodologia com as seguintes etapas principais: (1) georreferenciação em SIG de elementos de cartografia; (2) planeamento e elaboração do plano de amostragem; (3) recolha e tratamento de amostras de solos e sedimentos; (4) ensaios não destrutivos de medição de radiação gama por SPP2 e determinações analíticas por XRF; (5) análise exploratória e tratamento estatístico de dados e análise espacial; (6) análise de resultados; (7) definição de teores geoquímicos de fundo local. As amostras de sedimentos foram retiradas de uma ribeira que intersecta a área da anomalia e alimenta uma barragem local de enrocamento; as amostras de solos foram retiradas de linhas de amostragem perpendiculares à ribeira. As determinações analíticas registaram os teores em diversos metais, como o urânio, crómio, molibdénio, nióbio, vanádio e zinco e do semimetal arsénio. Com exceção do zinco, os resultados evidenciam que as concentrações naturais nestes metais no local onde se localiza uma importante jazida de minérios de urânio são muito elevados, e quando comparados com os valores standard da norma Canadiana mostram poder existir risco para a saúde se não forem limitados os usos do local.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main reasons for the attention focused on ceramics as possible structural materials are their wear resistance and the ability to operate with limited oxidation and ablation at temperatures above 2000°C. Hence, this work is devoted to the study of two classes of materials which can satisfy these requirements: silicon carbide -based ceramics (SiC) for wear applications and borides and carbides of transition metals for ultra-high temperatures applications (UHTCs). SiC-based materials: Silicon carbide is a hard ceramic, which finds applications in many industrial sectors, from heat production, to automotive engineering and metals processing. In view of new fields of uses, SiC-based ceramics were produced with addition of 10-30 vol% of MoSi2, in order to obtain electro conductive ceramics. MoSi2, indeed, is an intermetallic compound which possesses high temperature oxidation resistance, high electrical conductivity (21·10-6 Ω·cm), relatively low density (6.31 g/cm3), high melting point (2030°C) and high stiffness (440 GPa). The SiC-based ceramics were hot pressed at 1900°C with addition of Al2O3-Y2O3 or Y2O3-AlN as sintering additives. The microstructure of the composites and of the reference materials, SiC and MoSi2, were studied by means of conventional analytical techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (SEM-EDS). The composites showed a homogeneous microstructure, with good dispersion of the secondary phases and low residual porosity. The following thermo-mechanical properties of the SiC-based materials were measured: Vickers hardness (HV), Young’s modulus (E), fracture toughness (KIc) and room to high temperature flexural strength (σ). The mechanical properties of the composites were compared to those of two monolithic SiC and MoSi2 materials and resulted in a higher stiffness, fracture toughness and slightly higher flexural resistance. Tribological tests were also performed in two configurations disco-on-pin and slideron cylinder, aiming at studying the wear behaviour of SiC-MoSi2 composites with Al2O3 as counterfacing materials. The tests pointed out that the addition of MoSi2 was detrimental owing to a lower hardness in comparison with the pure SiC matrix. On the contrary, electrical measurements revealed that the addition of 30 vol% of MoSi2, rendered the composite electroconductive, lowering the electrical resistance of three orders of magnitude. Ultra High Temperature Ceramics: Carbides, borides and nitrides of transition metals (Ti, Zr, Hf, Ta, Nb, Mo) possess very high melting points and interesting engineering properties, such as high hardness (20-25 GPa), high stiffness (400-500 GPa), flexural strengths which remain unaltered from room temperature to 1500°C and excellent corrosion resistance in aggressive environment. All these properties place the UHTCs as potential candidates for the development of manoeuvrable hypersonic flight vehicles with sharp leading edges. To this scope Zr- and Hf- carbide and boride materials were produced with addition of 5-20 vol% of MoSi2. This secondary phase enabled the achievement of full dense composites at temperature lower than 2000°C and without the application of pressure. Besides the conventional microstructure analyses XRD and SEM-EDS, transmission electron microscopy (TEM) was employed to explore the microstructure on a small length scale to disclose the effective densification mechanisms. A thorough literature analysis revealed that neither detailed TEM work nor reports on densification mechanisms are available for this class of materials, which however are essential to optimize the sintering aids utilized and the processing parameters applied. Microstructural analyses, along with thermodynamics and crystallographic considerations, led to disclose of the effective role of MoSi2 during sintering of Zrand Hf- carbides and borides. Among the investigated mechanical properties (HV, E, KIc, σ from room temperature to 1500°C), the high temperature flexural strength was improved due to the protective and sealing effect of a silica-based glassy phase, especially for the borides. Nanoindentation tests were also performed on HfC-MoSi2 composites in order to extract hardness and elastic modulus of the single phases. Finally, arc jet tests on HfC- and HfB2-based composites confirmed the excellent oxidation behaviour of these materials under temperature exceeding 2000°C; no cracking or spallation occurred and the modified layer was only 80-90 μm thick.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal release rate of nuclear reaction products was investigated in offline annealing experiments. This work was motivated by the search for a high melting catcher material for recoiling products from heavy ion induced nuclear fusion reactions. Polycrystalline refractory metal foils of Ni, Y, Zr, Nb, Mo, Hf, W, and Re were investigated as catcher metals. Diffusion data for various tracer/host combinations were deduced from the measured release rates. This work focuses on the diffusion and the release rate of volatile p-elements from row 5 and 6 of the periodic table as lighter homologues of the superheavy elements with Z ≥ 113 to be studied in future experiments. A massive radiation damage enhancement of the diffusion velocity was observed. Diffusion trends have been established along the groups and rows of the periodic table based on the dependence of diffusion velocity on atomic sizes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metallic catcher foils have been investigated on their thermal release capabilities for future superheavy element studies. These catcher materials shall serve as connection between production and chemical investigation of superheavy elements (SHE) at vacuum conditions. The diffusion constants and activation energies of diffusion have been extrapolated for various catcher materials using an atomic volume based model. Release rates can now be estimated for predefined experimental conditions using the determined diffusion values. The potential release behavior of the volatile SHE Cn (E112), E113, Fl (E114), E115, and Lv (E116) from polycrystalline, metallic foils of Ni, Y, Zr, Nb, Mo, Hf, Ta, and W is predicted. Example calculations showed that Zr is the best suited material in terms of on-line release efficiency and long-term operation stability. If higher temperatures up to 2773 K are applicable, tungsten is suggested to be the material of choice for such experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metallocene dichlorides constitute a remarkable class of antineoplastic agents that are highly effective against several cancer cell lines. They were shown to accumulate in the DNA-rich region, which suggests DNA as the primary target. These compounds exhibit two cyclopentadienyl ligands and two labile halide ligands, resulting in a bent sandwich structure. The cis-dihalide motif is structurally related to the cis-chloro configuration of cisplatin and similar modes of action can thus be assumed. Cisplatin binds to two neighboring guanine nucleobases in DNA and consequently, distorts the double-helix, thereby inhibiting DNA replication and transcription. Platinum is classified as a soft Lewis acid and binds preferentially to the nitrogen atoms within the nucleobases. The metallocene dichlorides investigated in this study comprise the metal centers Ti, V, Nb, Mo, Hf, and W, which are classified as hard or intermediate Lewis acids, and thus, favor binding to the phosphate oxygen. Although several studies reported adduct formation of metallocene dichlorides with nucleic acids, substantial information about the adduct composition, the binding pattern, and the nucleobase selectivity has not been provided yet. ESI-MS analyses gave evidence for the formation of metallocene adducts (M = Ti, V, Mo, and W) with single-stranded DNA homologues at pH 7. No adducts were formed with Nb and Hf at neutral pH, albeit adducts with Nb were observed at a low pH. MS2 data revealed considerable differences of the adduct compositions. The product ion spectra of DNA adducts with hard Lewis acids (Ti, V) gave evidence for the loss of metallocene ligands and only moderate backbone fragmentation was observed. By contrast, adducts with intermediate Lewis acids (Mo, W) retained the hydroxy ligands. Preliminary results are in good agreement with the Pearson concept and DFT calculations. Since the metallodrugs were not lost upon CID, the nucleobase selectivity, stoichiometry, and binding patterns can be elucidated by means of tandem mass spectrometry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of Mo, Ti, and Zr on the diffusion and growth of the Nb(X)Si-2 and Nb(X)(5)Si-3 phases in an Nb(X)-Si system are analyzed. The integrated diffusion coefficients are determined from diffusion couple experiments and compared with the data previously calculated in a binary Nb-Si system. The growth rates of both phases are affected by the addition of Mo and Zr, whereas the addition of Ti has no effect. The atomic mechanism of diffusion is also discussed based on the crystal structure and the possible changes in the defect concentrations due to alloying. Finally, the growth mechanism of the phases is discussed on the basis of a physico-chemical approach. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Group VB and VIB M-Si systems are considered to show an interesting pattern in the diffusion of components with the change in atomic number in a particular group (M = V, Nb, Ta or M = Mo, W, respectively). Mainly two phases, MSi2 and M5Si3 are considered for this discussion. Except for Ta-silicides, the activation energy for the integrated diffusion of MSi2 is always lower than M5Si3. In both phases, the relative mobilities measured by the ratio of the tracer diffusion coefficients, , decrease with an increasing atomic number in the given group. If determined at the same homologous temperature, the interdiffusion coefficients increase with the atomic number of the refractory metal in the MSi2 phases and decrease in the M5Si3 ones. This behaviour features the basic changes in the defect concentrations on different sublattices with a change in the atomic number of the refractory components.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present the first report of a tungsten-free cobalt-based superalloy having a composition Co-10Al-5Mo-2Nb. The alloy is strengthened by cuboidal precipitates of metastable Co-3(Al,Mo,Nb) distributed throughout the microstructure. The precipitates are coherent with the face-centred cubic gamma-Co matrix and possess ordered Ll(2) structure. The microstructure is identical to the popular gamma-gamma' type nickel-based superalloys and that of recently reported Co-Al-W-based alloys. Being tungsten free, the reported alloy has higher specific proof stress compared to existing cobalt-based superalloys. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An effective Mo-1 V(0.3)Te(0.23)Nb(0.12)Ox catalysts for the selective oxidation of propane to acrylic acid was successfully prepared by using rotavap method. The catalyst was characterized by XRD and shown to contain (V0.07Mo0.93)(5)O-14, (Nb0.09Mo0.91)O-2.8,3MoO(2)(.)Nb(2)O(5), Mo5TeO16 and/or TeMo4O13, Te4Nb2O13 and a new TeMO (TeVMoO or TeVNbMoO; M = Mo, V and Nb) crystalline phase as the major phase. Regardless of the intrinsic catalytic characteristics of the catalyst, the external reaction conditions would have strong effects on the catalytic performance for propane oxidation. So in this paper, the effects of reaction conditions were investigated and discussed, including temperature, space velocity, V(air)/V(C3H8) ratio and V(steam)/V(C3H8) ratio. A stability test was also carried out on Mo1V0.3Te0.23Nb0.12Ox catalyst. The experimental run was performed during 100 h under the optimized reaction conditions. During the 100 h of operation, propane conversion and acrylic acid selectivity remained at about 59 and 64%, respectively. (C) 2004 Elsevier B.V. All rights reserved.