980 resultados para NANOTECHNOLOGY (100700)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herein are reported the synthesis of a conjugate of chitosan with L-leucine, the preparation of nanoparticles from both chitosan and the conjugate for use in pulmonary drug delivery, and the in vitro evaluation of toxicity and inflammatory effects of both the polymers and their nanoparticles on the bronchial epithelial cell line, BEAS-2B. The nanoparticles, successfully prepared both from chitosan and the conjugate, had a diameter in the range of 10−30 nm. The polymers and their nanoparticles were tested for their effects on cell viability by MTT assay, on trans-epithelial permeability by using sodium fluorescein as a fluid phase marker, and on IL-8 secretion by ELISA. The conjugate nanoparticles had a low overall toxicity (IC50 = 2 mg/mL following 48 h exposure; no induction of IL-8 release at 0.5 mg/mL concentration), suggesting that they may be safe for pulmonary drug delivery applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning Tunneling Spectroscopy was performed on a (15,0) single wall carbon nanotube partially wrapped by Poly(3-hexyl-thiophene). On the bare nanotube section, the local density of states is in good agreement with the theoretical model based on local density approximation and remarkably is not perturbed by the polymer wrapping. On the coiled section, a rectifying current-voltage characteristic has been observed along with the charge transfer from the polymer to the nanotube. The electron transfer from Poly(3-hexyl-thiophene) to metallic nanotube was previously theoretically proposed and contributes to the presence of the Schottky barrier at the interface responsible for the rectifying behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By incorporating ferrocene into the hydrophobic membrane of PEG-b-PCL polymersome nanoparticles it is possible to selectively visualize their core using Transmission Electron Microscopy (TEM). Two different sizes of ferrocene-loaded polymersomes with mean hydrodynamic diameters of approximately 40 and 90 nm were prepared. Image analysis of TEM pictures of these polymersomes found that the mean diameter of the core was 4–5 times smaller than the mean hydrodynamic diameter. The values obtained also allow the surface diameter and internal volume of the core to be calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that when a soft polymer like Poly(3-hexyl-thiophene) wraps multiwall nanotubes by coiling around the main axis, a localized deformation of the nanotube structure is observed. High resolution transmission electron microscopy shows that radial compressions of about 4% can take place, and could possibly lead to larger interlayer distance between the nanotube inner walls and reduce the innermost nanotube radius. The mechanical stress due to the polymer presence was confirmed by Raman spectroscopic observation of a gradual upshift of the carbon nanotube G-band when the polymer content in the composites was progressively increased. Vibrational spectroscopy also indicates that charge transfer from the polymer to the nanotubes is responsible for a peak frequency relative downshift for high P3HT-content samples. Continuously acquired transmission electron microscopy images at rising temperature show the MWCNT elastic compression and relaxation due to polymer rearrangement on the nanotube surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first outdoor test of small-scale dye sensitized solar cells (DSC) powering a stand-alone nanosensor node. A solar cell test station (SCTS) has been developed using standard DSC to power a gas nanosensor, a radio transmitter, and the control electronics (CE) for battery charging. The station is remotely monitored through wired (Ethernet cable) or wireless connection (radio transmitter) in order to evaluate in real time the performance of the solar cells and devices under different weather conditions. The 408 cm2 active surface module produces enough energy to power a gas nanosensor and a radio transmitter during the day and part of the night. Also, by using a programmable load we keep the system working on the maximum power point (MPP) quantifying the total energy generated and stored in a battery. These experiments provide useful data for future outdoor applications such as nanosensor networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inclusion of carbon nanotubes in polymer matrix has been proposed to enhance the polymer’s physical and electrical properties. In this study, microscopic and spectroscopic techniques are used to investigate the interaction between poly(3-hexylthiophene) (P3HT) and nanotubes and the reciprocal modification of physical properties. The presence of P3HT-covered nanotubes dispersed in the polymer matrix has been observed by atomic force microscopy and transmission electron microscopy. Then, the modification of P3HT optical properties due to nanotube inclusion has been evidenced with spectroscopic techniques like absorption and Raman spectroscopy. The study is completed with detailed nanoscale analysis by scanning probe techniques. The ordered self assembly of polymer adhering on the nanotube is unveiled by showing an example of helical wrapping of P3HT. Scanning tunneling spectroscopy study provides information on the electronic structure of nanotube-polymer assembly, revealing the charge transfer from P3HT to the nanotube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gas sensing properties of graphene-like nano-sheets deposited on 36° YX lithium tantalate (LiTaO3) surface acoustic wave (SAW) transducers are reported. The thin graphene-like nano-sheets were produced via the reduction of graphite oxide which was deposited on SAW interdigitated transducers (IDTs). Their sensing performance was assessed towards hydrogen (H2) and carbon monoxide (CO) in a synthetic air carrier gas at room temperature (25 °C) and 40 °C. Raman and X-ray photoelectron spectroscopy (XPS) revealed that the deposited graphite oxide (GO) was not completely reduced creating small, graphitic nanocrystals ∼2.7 nm in size. © 2008 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have grown defect-rich ZnO nanowires on a large scale by the vapour phase reaction method without using any metal catalyst and vacuum system. The defects, including zinc vacancies, oxygen interstitials and oxygen antisites, are related to the excess of oxygen in ZnO nanowires and are controllable. The nanowires having high excess of oxygen exhibit a brown-colour photoluminescence, due to the dominant emission band composed by violet, blue and green emissions. Those having more balanced Zn and O show a dominant green emission, giving rise to a green colour under UV light illumination. By O2-annealing treatment the violet luminescence after the band-edge emission UV peak can be enhanced for as-grown nanowires. However, the green emission shows different changing trends under O2-annealing treatment, associated with the excess of oxygen in the nanowires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strain-induced self-assembly of suitable semiconductor pairs is an attractive natural route to nanofabrication. To bring to fruition their full potential for actual applications, individual nanostructures need to be combined into ordered patterns in which the location of each single unit is coupled with others and the surrounding environment. Within the Ge/Si model system, we analyze a number of examples of bottom-up strategies in which the shape, positioning, and actual growth mode of epitaxial nanostructures are tailored by manipulating the intrinsic physical processes of heteroepitaxy. The possibility of controlling elastic interactions and, hence, the configuration of self-assembled quantum dots by modulating surface orientation with the miscut angle is discussed. We focus on the use of atomic steps and step bunching as natural templates for nanodot clustering. Then, we consider several different patterning techniques which allow one to harness the natural self-organization dynamics of the system, such as: scanning tunneling nanolithography, focused ion beam and nanoindentation patterning. By analyzing the evolution of the dot assembly by scanning probe microscopy, we follow the pathway which leads to lateral ordering, discussing the thermodynamic and kinetic effects involved in selective nucleation on patterned substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Electrospun nanofibers represent potent guidance substrates for nervous tissue repair. Development of nanofiber-based scaffolds for CNS repair requires, as a first step, an understanding of appropriate neural cell type-substrate interactions. Materials & methods: Astrocyte–nanofiber interactions (e.g., adhesion, proliferation, process extension and migration) were studied by comparing human neural progenitor-derived astrocytes (hNP-ACs) and a human astrocytoma cell line (U373) with aligned polycaprolactone (PCL) nanofibers or blended (25% type I collagen/75% PCL) nanofibers. Neuron–nanofiber interactions were assessed using a differentiated human neuroblastoma cell line (SH-SY5Y). Results & discussion: U373 cells and hNP-AC showed similar process alignment and length when associated with PCL or Type I collagen/PCL nanofibers. Cell adhesion and migration by hNP-AC were clearly improved by functionalization of nanofiber surfaces with type I collagen. Functionalized nanofibers had no such effect on U373 cells. Another clear difference between the U373 cells and hNP-AC interactions with the nanofiber substrate was proliferation; the cell line demonstrating strong proliferation, whereas the hNP-AC line showed no proliferation on either type of nanofiber. Long axonal growth (up to 600 µm in length) of SH-SY5Y neurons followed the orientation of both types of nanofibers even though adhesion of the processes to the fibers was poor. Conclusion: The use of cell lines is of only limited predictive value when studying cell–substrate interactions but both morphology and alignment of human astrocytes were affected profoundly by nanofibers. Nanofiber surface functionalization with collagen significantly improved hNP-AC adhesion and migration. Alternative forms of functionalization may be required for optimal axon–nanofiber interactions.