7 resultados para NANOLAMINATES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical model for size-dependent interface phonon transmission and thermal conductivity of nanolaminates is derived based on the improved acoustic mismatch theory and the Lindemann melting theory by considering the size effect of phonon velocity and the interface lattice mismatch effect. The model suggests that the interface phonon transmission is dominant for the cross-plane thermal conductivity of nanolaminates and superlattices, and the intrinsic variety of size effect of thermal conductivity for different systems is proposed based on the competition mechanism of size effect of phonon transport between two materials constituting the interfaces. The model's prediction for thermal conductivity of nanolaminates agrees with the experimental results. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the temperature on the compressive stress–strain behavior of Al/SiC nanoscale multilayers was studied by means of micropillar compression tests at 23 °C and 100 °C. The multilayers (composed of alternating layers of 60 nm in thickness of nanocrystalline Al and amorphous SiC) showed a very large hardening rate at 23 °C, which led to a flow stress of 3.1 ± 0.2 GPa at 8% strain. However, the flow stress (and the hardening rate) was reduced by 50% at 100 °C. Plastic deformation of the Al layers was the dominant deformation mechanism at both temperatures, but the Al layers were extruded out of the micropillar at 100 °C, while Al plastic flow was constrained by the SiC elastic layers at 23 °C. Finite element simulations of the micropillar compression test indicated the role played by different factors (flow stress of Al, interface strength and friction coefficient) on the mechanical behavior and were able to rationalize the differences in the stress–strain curves between 23 °C and 100 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite laminates on the nanoscale have shown superior hardness and toughness, but little is known about their high temperature behavior. The mechanical properties (elastic modulus and hardness) were measured as a function of temperature by means of nanoindentation in Al/SiC nanolaminates, a model metal–ceramic nanolaminate fabricated by physical vapor deposition. The influence of the Al and SiC volume fraction and layer thicknesses was determined between room temperature and 150 °C and, the deformation modes were analyzed by transmission electron microscopy, using a focused ion beam to prepare cross-sections through selected indents. It was found that ambient temperature deformation was controlled by the plastic flow of the Al layers, constrained by the SiC, and the elastic bending of the SiC layers. The reduction in hardness with temperature showed evidence of the development of interface-mediated deformation mechanisms, which led to a clear influence of layer thickness on the hardness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the evolution of radiation damage and changes in hardness of sputter-deposited Cu/V nanolaminates upon room temperature helium ion irradiation. As the individual layer thickness decreases from 200 to 5 nm, helium bubble density and radiation hardening both decrease. The magnitude of radiation hardening becomes negligible for individual layer thickness of 2.5 nm or less. These observations indicate that nearly immiscible Cu/V interface can effectively absorb radiation-induced point defects and reduce their concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the investigation of the Ti2GeC properties by X-ray diffraction, magnetic and electrical resistivity measurements. Polycrystalline samples of Ti2GeC with nominal compositions were prepared by solid state reaction. X-ray powder patterns suggest that all peaks can be indexed with the hexagonal phase of Cr2AlC prototype. The temperature dependence of both electrical resistivity and magnetization indicate a bulk type-II superconductivity at 9.5 K. Magnetoresistive data suggest an upper critical field of B-c2 similar to 8.1 T and coherence length similar to 61 A degrees . Furthermore, the results highlight the highest critical temperature reported up to now for an H-phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoscale Al/SiC composite laminates have unique properties, such as high strength, high toughness, and damage tolerance. In this article, the high-temperature nanoindentation response of Al/SiC nanolaminates is explored from room temperature up to 300_C. Selected nanoindentations were analyzed postmortem using focused ion beam and transmission electron microscopy to ascertain the microstructural changes and the deformation mechanisms operating at high temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mn+1AXn compounds, the ternary layered nanolaminates have gathered momentum in the last decade since its advent because of their unusual but exciting properties. These technologically important compounds combine some of the best properties of metals and ceramics. Like ceramics they are refractory, oxidation resistant, elastically stiff and relatively light. They also exhibit metallic properties like excellent machinability, thermal and electrical conductivity. This dissertation concentrates on the synthesis of germanium-based 211 Mn+1AXn compounds. The main objective of the research was to synthesize predominantly single phase samples of Cr2GeC, V2GeC and Ti2GeC. Another goal was to study the effect of solid substitutions on the M-site of Mn+1AXn compounds with Ge as an A-element. This study is in itself the first to demonstrate the synthesis of (Cr0.5V0.5)2GeC a novel Mn+1AXn compound. Scanning electron microscopy coupled with energy dispersive spectroscopy, x-ray diffraction and electron probe microanalysis were employed to confirm the presence of predominantly single phase samples of M2GeC compounds where M = Ti, V, Cr and (Cr 0.5V0.5). A large part of the dissertation also focuses on the effect of the compressibility on the Ge-based 211 Mn+1AXn compounds with the aid of diamond anvil cell and high energy synchrotron radiation. This study also concentrates on the stability of these compounds at high temperature and thereby determines its suitability as high temperature structural materials. In order to better understand the effect of substitutions on A-site of 211 Mn+1 AXn compounds under high pressure and high temperature, a comparison is made with previously reported 211 Mn+1AXn compounds with Al, Ga and S as A-site elements.