983 resultados para NA2O-B2O3 GLASSES
Resumo:
Transparent glasses in the system 3BaO-3TiO2-B2O3 (BTBO) were fabricated via the conventional melt-quenching technique. The as-quenched samples were confirmed to be non-crystalline by differential thermal analysis (DTA). Thermal parameters were evaluated using non-isothermal DTA experiments. The Kauzmann temperature was found to be 759 K based on heating-rate-dependent glass transition and crystallization temperatures. A theoretical relation for the temperature-dependent viscosity is proposed for these glasses and glass-ceramics.
Resumo:
Transparent SrBi2B2O7 glasses were prepared via melt-quenching technique and characterized using differential scanning calorimetry and x-ray powder diffraction. The ac conductivities of the glasses were studied as a function of frequency (100 Hz-10 MHz) at different temperatures. The frequency dependence of conductivity has been analyzed using Almond-West expression. The exponent n was nearly unaffected by temperature. Impedance and modulus spectroscopies were employed to further examine the electrical data. Dielectric relaxation exhibited a stretched exponential behavior with a stretching exponent beta independent of temperature. From conductivity analysis we have proposed that the charge transport occurs through the participation of nonbridging oxygen (NBO), which switches positions in a facile manner. The stretched exponential behavior appears to be a direct consequence of the NBO switching mechanism of charge transport.
Resumo:
X-ray powder diffraction along with differential thermal analysis carried out on the as-quenched samples in the 3BaO-3TiO(2)-B2O3 system confirmed their amorphous and glassy nature, respectively. The dielectric constants in the 1 kHz-1 MHz frequency range were measured as a function of temperature (323-748 K). The dielectric constant and loss were found to be frequency independent in the 323-473 K temperature range. The temperature coefficient of dielectric constant was estimated using Havinga's formula and found to be 16 ppm K-1. The electrical relaxation was rationalized using the electric modulus formalism. The dielectric constant and loss were 17 +/- 0.5 and 0.005 +/- 0.001, respectively at 323 K in the 1 kHz-1 MHz frequency range which may be of considerable interest to capacitor industry.
Resumo:
Silver iodide-based fast ion conducting glasses containing silver phosphate and silver borate have been studied. An attempt is made to identify the interaction between anions by studying the chemical shifts of31P and11B atoms in high resolution (HR) magic angle spinning (MAS) NMR spectra. Variation in the chemical shifts of31P or11B has been observed which is attributed to the change in the partial charge on the31P or11B. This is indicative of the change in the electronegativity of the anion matrix as a whole. This in turn is interpreted as due to significant interaction among anions. The significance of such interaction to the concept of structural unpinning of silver ions in fast ion conducting glasses is discussed.
Resumo:
Electrical conductivity and dielectric relaxation studies with a wide range of compositions of lithium ion conducting glasses belonging to the ternary glass system Li2SO4-Li2O-B2-O3- have been carried out over the temperature range 150-450 K and between 10 - 10(7) Hz. DC conductivities exhibit two different activation regions. This seems to suggest the presence of a cluster tissue texture in these glasses with weakly ordered clusters of Li2SO4 and lithium berates being held together by a truly amorphous tissue of the same average composition as clusters. AC conductivity behaviour of these glasses has been analysed using both power law and stretched exponential relaxation functions. The variation of the power law exponent s and the stretched exponent beta with temperature seems to be consistent with the presence of a cluster tissue texture in these glasses.
Resumo:
Abstract: A wide range of compositions of grasses in the ternary Li2O-PbO-B2O3 glass system was prepared, and de and ac conductivity measurements were carried out on these glasses. The presence of lead leads to a decrease in de conductivities and an increase in the activation energies. This is likely to be due to the increase of the partial charges on the oxygen atoms and to the presence of the lone pair on the Pb atom; both of these factors impede lithium ion motion. The ac conductivity and dielectric behavior of these glasses support such a conjecture. (C) 2000 Elsevier Science Ltd.
Resumo:
Glasses in the system CaO-Bi2O3-B2O3 (in molar ratio) have been prepared using melt-quenching route. Ion transport characteristics were investigated for this glass using electric modulus, ac conductivity and impedance measurements. The ac conductivity was rationalized using Almond-West power law. Dielectric relaxation has been analyzed based on the behavior of electric modulus behavior. The activation energy associated with the electrical relaxation determined from the electric modulus spectra was found to be 1.76 eV, close to that the activation energy for dc conductivity (1.71 eV) indicating that the same species took part in both the processes. The stretched exponent beta (0.5-0.6) is invariant with temperature for the present glasses.
Resumo:
High density transparent glasses (7.86 g/cc) were fabricated in the 2Bi(2)O(3)-B2O3 (BBO) system. Optical band gap of the obtained glasses was found to be 2.6eV. The refractive index measured for these glasses was 2.25 +/- 0.05 at lambda=543 nm. Nonlinear refraction and absorption studies were carried out on the BBO glasses using z-scan technique a lambda=532 nm of 10 ns pulse width. The nonlinear refractive index obtained was n(2)=12.1x10(-14) cm(2)/W and nonlinear absorption coefficient was beta=15.2 cm/GW. The n(2) and beta values of the BBO glasses were large compared to the other reported high index bismuth based oxide glass systems in the literature. These were attributed to the high density, high linear refractive index, low band gap and two photon absorption associated with these glasses. The electronic origin of large nonlinearities was discussed based on bond-orbital theory.
Resumo:
Optically clear glasses in the ZnO-Bi2O3-B2O3 (ZBBO) system were fabricated via the conventional melt-quenching technique. Dielectric constant and loss measurements carried out on ZBBO glasses unraveled nearly frequency (1 kHz-10 MHz)-independent dielectric characteristics associated with significantly low loss (D = 0.004). However, weak temperature response was found with temperature coefficient of dielectric constant 18 +/- 4 ppm A degrees C-1 in the 35-250 A degrees C temperature range. The conduction and relaxation phenomena were rationalized using universal AC conductivity power law and modulus formalism respectively. The activation energy for relaxation determined using imaginary parts of modulus peaks was 2.54 eV which was close to that of the DC conduction implying the involvement of similar energy barriers in both the processes. Stretched and power exponents were temperature dependent. The relaxation and conduction in these glasses were attributed to the hoping and migration of Bi3+ cations in their own and different local environment.
Resumo:
Glasses in the x(BaO-TiO2)-B2O3 (x = 0.25, 0.5, 0.75, and 1 mol.) system were fabricated via the conventional melt-quenching technique. Thermal stability and glass-forming ability as determined by differential thermal analysis (DTA) were found to increase with increasing BaO-TiO2 (BT) content. However, there was no noticeable change in the glass transition temperature (T-g). This was attributed to the active participation of TiO2 in the network formation especially at higher BT contents via the conversion of the TiO6 structural units into TiO4 units, which increased the connectivity and resulted in an increase in crystallization temperature. Dielectric and optical properties at room temperature were studied for all the glasses under investigation. Interestingly, these glasses were found to be hydrophobic. The results obtained were correlated with different structural units and their connectivity in the glasses.
Resumo:
This paper reports on the optical spectroscopic properties and thermal stability of Er3+-doped TeO2-BaO (Li2O,NaO)-La2O3 glasses for developing 1.5-mu m fiber amplifiers. Upon excitation at 977 nm laser diode, an intense 1.53-mu m infrared fluorescence has been observed with a broad full width at half maximum (FWHM) of about 60 nm for the Er3+-doped TeO2-BaO (Li2O, Na2O)-La2O3 glass with 10 mol% of BaO. The calculated fluorescence lifetime and the emission cross-sections of the 1.53-mu m transition are 2.91 ms and similar to 9.97 x 10(-21) cm(2), respectively. It is noted that the gain bandwidth, a, x FWHM, of the TeO2-BaO-La2O3Er2O3 glass is about 600, which is significantly higher than that in silicate and phosphate glasses. Meanwhile, it is interesting to note that the TeO2-BaO-La2O3-Er2O3 glass has shown a high glass thermal stability and good infrared transmittance. As a result, TeO2-BaO (Li2O, Na2O)-La2O3 glass with 10 mol% of BaO has been considered to be more useful as a host for broadband optical fiber amplifier. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The blue long-lasting phosphorescence (LLP) phenomenon was observed for Eu2+-doped SrO-B2O3 glasses prepared in the reducing atmosphere. The phosphorescence peaks at about 450 nm due to the 4f5d -> 4f transition of Eu2+. With the doping of different amounts of Eu2+, the concentration-quenching phenomenon was observed for both the LLP and photoluminescence of the glasses, and the critical concentration for the two cases was same, i.e., 0.02 mol% Eu2+. And by the investigation of the TL curves, the content of Eu2+ had an effect on the trap depth of the samples. At last the possible mechanism of the LLP of the samples was suggested.
Resumo:
The mechanisms of nucleation and growth and the solid-to-liquid transition of metallic nanoclusters embedded in sodium borate glass were recently studied in situ via small-angle X-ray scattering (SAXS) and wide-an-le X-ray scattering (WAXS). SAXS results indicate that, under isothermal annealing conditions, the formation and growth of Bi or Ag nanoclusters embedded in sodium borate glass occurs through two successive stages after a short incubation period. The first stage is characterized by the nucleation and growth of spherical metal clusters promoted by the diffusion of Bi or Ag atoms through the initially supersaturated glass phase. The second stage is named the coarsening stage and occurs when the (Bi- or Ag-) doping level of the vitreous matrix is close to the equilibrium value. The experimental results demonstrated that, at advanced stages of the growth process, the time dependence of the average radius and density number of the clusters is in agreement with the classical Lifshitz-Slyozov-Waoner (LSW) theory. However, the radius distribution function is better described by a lognormal function than by the function derived from the theoretical LSW model. From the results of SAXS measurements at different temperatures, the activation energies for the diffusion of Ag and Bi through sodium borate glass were determined. In addition, via combination of the results of simultaneous WAXS and SAXS measurements at different temperatures, the crystallographic structure and the dependence of melting temperature T(m) on crystal radius R of Bi nanocrystals were established. The experimental results indicate that T(m) is a linear and decreasing function of nanocrystal reciprocal radius 1/R, in agreement with the Couchman and Jesser theoretical model. Finally, a weak contraction in the lattice parameters of Bi nanocrystals with respect to bulk crystals was established.
Resumo:
Two series of glasses were prepared, xNa2O, yZnO, 100 - x - yB2O3 and 30 - xNa2O, xZnO, 70B2O3 (mol%). The temperature dependence of the direct current resistivity was measured from room temperature to about 700 K and in both series of glasses we observed a simple Arrhenius type of temperature dependence. However, the resistivity of the binary alkali glass increased steeply by as much as two orders of magnitude with the addition of even a small quantity of ZnO and remained virtually unaffected by further addition of ZnO. The resistivity decreases gradually with increasing pressure in Na2O-B2O3 but increases with increasing pressure with the addition of ZnO.