2 resultados para N. awatschensis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small mysid crustacean Neomysis awatschensis was collected in the west coast of Jiaozhou Bay, Qingdao, China in 1992 and acclimated and cultured in laboratory conditions since then. Standard acute toxicity tests using 4-6 d juvenile mysids of this species were conducted and the results were compared with Mysidopsis bahia, a standard toxicity test organism used in the US in terms of their sensitivities to reference toxins, as well as their taxonomy, morphology and geographic distributions. Because of its wide distribution along the Chinese coast, similar sensitivity to pollutants as M. bahia, short life history, small size and the case of handling, this study intended to use N. awatschensis as one of the standard marine organisms for toxicity testing in China. The species were applied to acute toxicity evaluations of drilling fluid and its additives I organotin TPT and toxic algae, and to chronic ( life cycle) toxicity assays of organotin TPT and a toxic dinofalgellate Alexandrium tamarense, respectively. Using N, awatschensis as a standard toxicity testing organism in marine pollution assessment in China is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To study the transfer of paralytic shellfish toxins (PST) using four simulated marine food chains: dinoflagellate Alexandrium tamarense -> Arterriia Artemia salina -> Mysid shrimp Neomysis awatschensis; A. tamarense-N. awatschensis: A. taniarense A. salina -> Perch Lateolabrax japonicus; and A. tamarense -> L. japonicus. Methods The ingestion of A. tamarense, a producer of PST, by L. japonicus, N. awatschensis, and A. salina was first confirmed by microscopic observation of A. tamarense cells in the intestine samples of the three different organisms, and by the analysis of Chl.a levels iii the samples. Toxin accumulation in L. japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly ibrough the vector of A. salina was then studied. The toxicity of samples was measured using the AOAC mouse bioassay method, and the toxin content and profile of A. tamarense were analyzed by the HPLC method. Results Both A. salina and N. awatschensis could ingest A. tamarense cells. However, the ingestion capability of A. salina exceeded that of N. awatschensis. After the exposure to the culture of A. tamarense (2 000 cells(.)mL(-1)) for 70 minutes, the content of ChLa in A. salina and N. awatschensis reached 0.87 and 0.024 mu g-mg(-1), respectively. Besides, A. tamarense cells existed in the intestines of L. japonicus, N. awatschensis and A. salina by microscopic observation. Therefore, the three organisms could ingest A. tamarense cells directly. A. salina could accumulate high content of PST, and the toxicity of A. salina in samples collected on days 1, 4, and 5 of the experiment was 2.18, 2.6, and 2.1 MU(.)g(-1), respectively. All extracts from the samples could lead to death of tested mice within 7 minutes, and the toxin content in arternia sample collected on the 1st day was estimated to be 1.65x10(-5) pg STX equa Vindividual. Toxin accumulation in L. japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly froin the vector of A. salina was also studied. The mice injected with extracts from L. japonicus and N. awatschensis samples that accumulated PST either directly or indirectly showed PST intoxication symptoms, indicating that low levels of PST existed in these samples. Conclusion Paralytic shellfish toxins can be transferred to L. japonicus, N. awatschensis, and A. salina from A. taniarense directly or indirectly via the food chains.