8 resultados para N-hexadecano
Resumo:
Lubricants and cutting middle distillates typically have large amounts of n-paraffins to increase its freezing point and fluidity. Accordingly, the removal of n-paraffins of long chain lubricants oils and diesel is essential to get a product with good cold flow properties. The development of new catalysts, which exhibit thermal stability and catalytic activity for the hydroisomerization reaction is still a challenge. Thus, silicoaluminophosphates (SAPO) were synthesized by different routes. Have been used also post-synthesis treatment for obtaining hybrid structures and others synthesis have been carried out with mesoporous template (soft and hard-template). Therefore, SAPO have been impregnated with H2PtCl6 solution by the incipient wetness method. Then assessments of catalytic activities in hydroisomerization and hydrocracking reactions of hexadecane have been held. Besides SAPO, niobium phosphate - NbP - were also impregnated with platinum and evaluated in the same reaction. After impregnation, these catalysts have been characterized by X-ray diffraction (XRD), nitrogen adsorption, infrared spectroscopy with adsorbed pyridine (IV-PY), scanning electron microscopy (SEM) and resonance nuclear magnetic 29Si (29Si-NMR). The characterization results by XRD have shown that it has been possible to obtain mesoporous SAPOs. However, for the syntheses with soft template there was collapse of the structure after removal of the organic template. Even so, these catalysts have been actives. It was possible to obtain hybrid materials through the synthesis of SAPO-11 made with hard templates and by means of post-synthesis treatments samples of SAPO-11. Moreover, NbP has shown characteristic XRD of amorphous materials, with high acidity and were active in the conversion of hexadecane.
Resumo:
Lubricants and cutting middle distillates typically have large amounts of n-paraffins to increase its freezing point and fluidity. Accordingly, the removal of n-paraffins of long chain lubricants oils and diesel is essential to get a product with good cold flow properties. The development of new catalysts, which exhibit thermal stability and catalytic activity for the hydroisomerization reaction is still a challenge. Thus, silicoaluminophosphates (SAPO) were synthesized by different routes. Have been used also post-synthesis treatment for obtaining hybrid structures and others synthesis have been carried out with mesoporous template (soft and hard-template). Therefore, SAPO have been impregnated with H2PtCl6 solution by the incipient wetness method. Then assessments of catalytic activities in hydroisomerization and hydrocracking reactions of hexadecane have been held. Besides SAPO, niobium phosphate - NbP - were also impregnated with platinum and evaluated in the same reaction. After impregnation, these catalysts have been characterized by X-ray diffraction (XRD), nitrogen adsorption, infrared spectroscopy with adsorbed pyridine (IV-PY), scanning electron microscopy (SEM) and resonance nuclear magnetic 29Si (29Si-NMR). The characterization results by XRD have shown that it has been possible to obtain mesoporous SAPOs. However, for the syntheses with soft template there was collapse of the structure after removal of the organic template. Even so, these catalysts have been actives. It was possible to obtain hybrid materials through the synthesis of SAPO-11 made with hard templates and by means of post-synthesis treatments samples of SAPO-11. Moreover, NbP has shown characteristic XRD of amorphous materials, with high acidity and were active in the conversion of hexadecane.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química
Resumo:
O gênero Copaifera L. é um dos mais importantes economicamente na Região Amazônica devido, principalmente, à produção dos óleos de copaíba, oléo-resinas com diversas propriedades farmacológicas confirmadas. Apesar disso, os estudos fitoquímicos com as sementes das árvores do gênero Copaifera L.são raros. Copaifera officinalis foi a primeira espécie do gênero Copaifera a ser descrita. Este trabalho descreve a composição dos extratos obtidos em hexano e em acetato de etila das sementes de C. officinalis. No extrato obtido em hexano, a análise por cromatografia em fase gasosa utilizando padrões e através de espectrometria de massas permitiu a identificação de: esqualeno, tetradecano, hexadecano, campesterol, estigmasterol e beta-sitosterol; os ácidos graxos hexadecanóico, 9-octadecenóico e octadecanóico (majoritários); e decanóico, eicosanóico, docosanóico e tetracosanóico (minoritários). Cumarina foi isolada do extrato em acetato de etila e identificada por técnicas de RMN.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica.
Resumo:
The extraction with pressurized fluids has become an attractive process for the extraction of essential oils, mainly due the specific characteristics of the fluids near the critical region. This work presents results of the extraction process of the essential oil of Cymbopogon winterianus J. with CO2 under high pressures. The effect of the following variables was evaluated: solvent flow rate (from 0.37 to 1.5 g CO2/min), pressure (66.7 and 75 bar) and temperature (8, 10, 15, 20 and 25 ºC) on the extraction kinetics and the total yield of the process, as well as in the solubility and composition of the C. winterianus essential oil. The experimental apparatus consisted of an extractor of fixed bed and the dynamic method was adopted for the calculation of the oil solubility. Extractions were also accomplished by conventional techniques (steam and organic solvent extraction). The determination and identification of extract composition were done by gas chromatography coupled with a mass spectrometer (GC-MS). The extract composition varied in function of the studied operational conditions and also related to the used extraction method. The main components obtained in the CO2 extraction were elemol, geraniol, citronellol and citronellal. For the steam extraction were the citronellal, citronellol and geraniol and for the organic solvent extraction were the azulene and the hexadecane. The most yield values (2.76%) and oil solubility (2.49x10-2 g oil/ g CO2) were obtained through the CO2 extraction in the operational conditions of T = 10°C, P = 66.7 bar and solvent flow rate 0.85 g CO2/min
Resumo:
The composition of petroleum may change from well to well and its resulting characteristics influence significantly the refine products. Therefore, it is important to characterize the oil in order to know its properties and send it adequately for processing. Since petroleum is a multicomponent mixture, the use of synthetic mixtures that are representative of oil fractions provides a better understand of the real mixture behavior. One way for characterization is usually obtained through correlation of physico-chemical properties of easy measurement, such as density, specific gravity, viscosity, and refractive index. In this work new measurements were obtained for density, specific gravity, viscosity, and refractive index of the following binary mixtures: n-heptane + hexadecane, cyclohexane + hexadecane, and benzene + hexadecane. These measurements were accomplished at low pressure and temperatures in the range 288.15 K to 310.95 K. These data were applied in the development of a new method of oil characterization. Furthermore, a series of measurements of density at high pressure and temperature of the binary mixture cyclohexane + n-hexadecane were performed. The ranges of pressure and temperature were 6.895 to 62.053 MPa and 318.15 to 413.15 K, respectively. Based on these experimental data of compressed liquid mixtures, a thermodynamic modeling was proposed using the Peng-Robinson equation of state (EOS). The EOS was modified with scaling of volume and a relatively reduced number of parameters were employed. The results were satisfactory demonstrating accuracy not only for density data, but also for isobaric thermal expansion and isothermal compressibility coefficients. This thesis aims to contribute in a scientific manner to the technological problem of refining heavy fractions of oil. This problem was treated in two steps, i.e., characterization and search of the processes that can produce streams with economical interest, such as solvent extraction at high pressure and temperature. In order to determine phase equilibrium data in these conditions, conceptual projects of two new experimental apparatus were developed. These devices consist of cells of variable volume together with a analytical static device. Therefore, this thesis contributed with the subject of characterization of hydrocarbons mixtures and with development of equilibrium cells operating at high pressure and temperature. These contributions are focused on the technological problem of refining heavy oil fractions
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)