5 resultados para N-Monoalkylation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of ferrites having the general formula Zn1-xCoxFe2O4 (x=0, 0.2, 0.5, 0.8 and 1.0)were prepared by soft chemical route. The materials were characterized by adopting various physico-chemical methods. The reaction of aniline with methanol was studied in a fixed-bed reactor system as a potential source for the production of various methyl anilines. It was observed that systems possessing low ‘ x’ values are highly selective and active for N-monoalkylation of aniline leading to N-methylaniline. Reaction parameters were properly varied to optimize the reaction conditions for obtaining N-methylaniline selectively and in better yield. Among the systems Zn0.8Co0.2Fe2O4 is remarkable due to its very high activity and excellent stability. Under the optimized conditions N-methylaniline selectivity exceeded 98%. Even at a methanol to aniline molar ratio of 2, the yield of N-methylaniline was nearly 50%, whereas its yield exceeded 71% at the molar ratio of 5. ZnFe2O4, though executed better conversion than Zn0.8Co0.2Fe2O4 in the initial period of the run, deactivates quickly as the reaction proceeds. The Lewis acidity of the catalysts is mainly responsible for the good performance. Cation distribution in the spinel lattice influences their acido-basic properties and, hence, these factors have been considered as helpful parameters to evaluate the activity of the systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various compositions of chromium manganese ferrospinels were tested as catalysts for the vapour phase alkylation of aniline with methanol. The samples were prepared by room temperature co-precipitation technique and characterized by various physico-chemical methods. The acidity–basicity determination revealed that the samples possess greater amount of basic sites than acidic sites. All the ferrite samples proved to be selective and active for N-monoalkylation of aniline leading to N-methyl aniline; Cr0.6Mn0.4Fe2O4, Cr0.8Mn0.2Fe2O4 and CrFe2O4 exhibited cent percent selectivity for N-methyl aniline. Neither C-alkylated products nor any other side products were detected for all catalyst samples. The catalytic activity of the samples studied in this reaction is related to their acid–base properties and also on the cation distribution. Under the optimized reaction conditions all the systems showed constant activity for a long duration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

S-adenosyl-L-homocysteine (AdoHcy) hydrolase effects hydrolytic cleavage of AdoHcy to produce both adenosine and L-homocysteine and is a feedback inhibitor of S-adenosyl- L-methionine (SAM). Nucleoside analogues bearing an alkenyl or fluoroalkenyl chain between sulfur and C5' utilizing Negishi coupling reactions were synthesized. Palladium-catalyzed cross-coupling between the 5'-deoxy-5'-(iodomethylene) nucleosides and alkylzinc bromides gives analogues with the alkenyl unit. Palladium-catalyzed selective monoalkylation of 5'-(bromofluoromethylene)-5'-deoxy-adenosine with alkylzinc bromide afford adenosylhomocysteine analogues with a 6'-(fluoro)vinyl motif. The vinylic adenine nucleosides produced time-dependent inactivation of the S-adenosyl-L-homocysteine hydrolases. Stannydesulfonylation reaction is a critical step in the synthesis of E-fluorovinyl cytidine (Tezacitabine) a ribonucleoside reductase inhibitor with a potent anticancer activity. The synthesis involves the removal of the sulfonyl group by a radical-mediated stannyldesulfonylation reaction using tributyltin hydride. In order to eliminate the toxicity of tin, I developed a radical-mediated germyldesulonylation utilizing less toxic germane hydrides. Treatment of the protected (E)-5'-deoxy-5'-[(p-toluenesulfonyl)-methylene]uridine and adenosine derivatives with tributyl- or triphenylgermane hydride effected radical-mediated germyldesulfonylations to give 5'-(tributyl- or triphenylgermyl)methylene-5'-deoxynucleoside derivatives as single (E)-isomers. Analogous treatment of 2'-deoxy-2'-[(phenylsulfonyl)methylene]uridine with Ph3GeH afforded the corresponding vinyl triphenylgermane product. Stereoselective halodegermylation of the (E)-5'-(tributylgermyl)-methylene-5'-deoxy nucleosides with NIS or NBS provided the Wittig-type (E)-5'-deoxy-5'-(halomethylene) nucleosides quantitatively. Radical-mediated thiodesulfonylation of the readily available vinyl and (α-fluoro) vinyl sulfones with aryl thiols in organic or aqueous medium to provide a bench and environmentally friendly protocol to access (α-fluoro)vinyl sulfides were developed. Methylation of the vinyl or (α-fluoro)vinyl phenyl sulfide gave access to the corresponding vinyl or (α-fluoro)vinyl sulfonium salts. These sulfonium ions were tested as possible methyl group donors during reactions with thiols, phenols or amino groups which are commonly present in natural amino acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzyme S-adenosyl-L-homocysteine (AdoHcy) hydrolase effects hydrolytic cleavage of AdoHcy to adenosine (Ado) and L-homocysteine (Hcy). The cellular levels of AdoHcy and Hcy are critical because AdoHcy is a potent feedback inhibitor of crucial transmethylation enzymes. Also, elevated plasma levels of Hcy in humans have been shown to be a risk factor in coronary artery disease. ^ On the basis of the previous finding that AdoHcy hydrolase is able to add the enzyme-sequestered water molecule across the 5',6'-double bond of (halo or dihalohomovinyl)-adenosines causing covalent binding inhibition, we designed and synthesized AdoHcy analogues with the 5',6'-olefin motif incorporated in place of the carbon-5' and sulfur atoms. From the available synthetic methods we chose two independent approaches: the first approach was based on the construction of a new C5'-C6' double bond via metathesis reactions, and the second approach was based on the formation of a new C6'-C7' single bond via Pd-catalyzed cross-couplings. Cross-metathesis of the suitably protected 5'-deoxy-5'-methyleneadenosine with racemic 2-amino-5-hexenoate in the presence of Hoveyda-Grubb's catalyst followed by standard deprotection afforded the desired analogue as 5' E isomer of the inseparable mixture of 9'R/S diastereomers. Metathesis of chiral homoallylglycine [(2S)-amino-5-hexenoate] produced AdoHcy analogue with established stereochemistry E at C5'atom and S at C9' atom. The 5'-bromovinyl analogue was synthesized using the bromination-dehydrobromination strategy with pyridinium tribromide and DBU. ^ Since literature reports on the Pd-catalyzed monoalkylation of dihaloalkenes (Csp2-Csp3 coupling) were scarce, we were prompted to undertake model studies on Pd-catalyzed coupling between vinyl dihalides and alkyl organometallics. The 1-fluoro-1-haloalkenes were found to undergo Negishi couplings with alkylzinc bromides to give multisubstituted fluoroalkenes. The alkylation was trans-selective affording pure Z-fluoroalkenes. The highest yields were obtained with PdCl 2(dppb) catalyst, but the best stereochemical outcome was obtained with less reactive Pd(PPh3)4. Couplings of 1,1-dichloro-and 1,1-dibromoalkenes with organozinc reagents resulted in the formation of monocoupled 1-halovinyl product. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzyme S-adenosyl-L-homocysteine (AdoHey) hydrolase effects hydrolytic cleavage of AdoHcy to adenosine (Ado) and L-homocysteine (Hcy). The cellular levels of AdoHcy and Hcy are critical because AdoHcy is a potent feedback inhibitor of crucial transmethylation enzymes. Also, elevated plasma levels of Hcy in humans have been shown to be a risk factor in coronary artery disease. On the basis of the previous finding that AdoHcy hydrolase is able to add the enzyme-sequestered water molecule across the 5',6'-double bond of (halo or dihalohomovinyl)-adenosines causing covalent binding inhibition, we designed and synthesized AdoHcy analogues with the 5',6'-olefin motif incorporated in place of the carbon-5' and sulfur atoms. From the available synthetic methods we chose two independent approaches: the first approach was based on the construction of a new C5'- C6' double bond via metathesis reactions, and the second approach was based on the formation of a new C6'-C7' single bond via Pd-catalyzed cross-couplings. Cross-metathesis of the suitably protected 5'-deoxy-5'-methyleneadenosine with racemic 2-amino-5-hexenoate in the presence of Hoveyda-Grubb's catalyst followed by standard deprotection afforded the desired analogue as 5'E isomer of the inseparable mixture of 9'RIS diastereomers. Metathesis of chiral homoallylglycine [(2S)-amino-5-hexenoate] produced AdoHcy analogue with established stereochemistry E at C5'atom and S at C9' atom. The 5'-bromovinyl analogue was synthesized using the brominationdehydrobromination strategy with pyridinium tribromide and DBU. Since literature reports on the Pd-catalyzed monoalkylation of dihaloalkenes (Csp2-Csp3 coupling) were scarce, we were prompted to undertake model studies on Pdcatalyzed coupling between vinyl dihalides and alkyl organometallics. The 1-fluoro-1- haloalkenes were found to undergo Negishi couplings with alkylzinc bromides to give multisubstituted fluoroalkenes. The alkylation was trans-selective affording pure Zfluoroalkenes. The highest yields were obtained with PdCl 2(dppb) catalyst, but the best stereochemical outcome was obtained with less reactive Pd(PPh3)4 . Couplings of 1,1- dichloro-and 1,1-dibromoalkenes with organozinc reagents resulted in the formation of monocoupled 1-halovinyl product.