27 resultados para N-Demethylating


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease affecting the epithelium of the oral cavity, pharynx and larynx. Conditions of most patients are diagnosed at late stages of the disease, and no sensitive and specific predictors of aggressive behavior have been identified yet. Therefore, early detection and prognostic biomarkers are highly desirable for a more rational management of the disease. Hypermethylation of CpG islands is one of the most important epigenetic mechanisms that leads to gene silencing in tumors and has been extensively used for the identification of biomarkers. In this study, we combined rapid subtractive hybridization and microarray analysis in a hierarchical manner to select genes that are putatively reactivated by the demethylating agent 5-aza-2'-deoxycytidine (5Aza-dC) in HNSCC cell lines (FaDu, UM-SCC-14A, UM-SCC-17A, UM-SCC-38A). This combined analysis identified 78 genes, 35 of which were reactivated in at least 2 cell lines and harbored a CpG island at their 5' region. Reactivation of 3 of these 35 genes (CRABP2, MX1, and SLC15A3) was confirmed by quantitative real-time polymerase chain reaction (PCR; fold change, >= 3). Bisulfite sequencing of their CpG islands revealed that they are indeed differentially methylated in the HNSCC cell lines. Using methylation-specific PCR, we detected a higher frequency of CRABP2 (58.1% for region 1) and MX1 (46.3%) hypermethylation in primary HNSCC when compared with lymphocytes from healthy individuals. Finally, absence of the CRABP2 protein was associated with decreased disease-free survival rates, supporting a potential use of CRABP2 expression as a prognostic biomarker for HNSCC patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: We have investigated the expression and regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in gastric cancer. EXPERIMENTAL DESIGN: Clinical gastric adenocarcinoma samples were analyzed by immunohistochemistry and quantitative real-time PCR for protein and mRNA expression of 15-PGDH and for methylation status of 15-PGDH promoter. The effects of interleukin-1beta (IL-1beta) and epigenetic mechanisms on 15-PGDH regulation were assessed in gastric cancer cell lines. RESULTS: In a gastric cancer cell line with a very low 15-PGDH expression (TMK-1), the 15-PGDH promoter was methylated and treatment with a demethylating agent 5-aza-2'-deoxycytidine restored 15-PGDH expression. In a cell line with a relatively high basal level of 15-PGDH (MKN-28), IL-1beta repressed expression of 15-PGDH mRNA and protein. This effect of IL-1beta was at least in part attributed to inhibition of 15-PGDH promoter activity. SiRNA-mediated knockdown of 15-PGDH resulted in strong increase of prostaglandin E(2) production in MKN-28 cells and increased cell growth of these cells by 31% in anchorage-independent conditions. In clinical gastric adenocarcinoma specimens, 15-PGDH mRNA levels were 5-fold lower in gastric cancer samples when compared with paired nonneoplastic tissues (n = 26) and 15-PGDH protein was lost in 65% of gastric adenocarcinomas (n = 210). CONCLUSIONS: 15-PGDH is down-regulated in gastric cancer, which could potentially lead to accelerated tumor progression. Importantly, our data indicate that a proinflammatory cytokine linked to gastric carcinogenesis, IL-1beta, suppresses 15-PGDH expression at least partially by inhibiting promoter activity of the 15-PGDH gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To measure the in vivo variations of CYP3A activity induced by anti-HIV drugs in human immunodeficiency virus (HIV)1-positive patients. METHODS: A low oral dose of midazolam (MID) (0.075 mg) was given to the patients and the 30-min total 1-OH midazolam (1-OHMID)/MID ratio was determined. Patients were phenotyped either before the introduction of antiretroviral treatments (control group, 90 patients) or after a variable period of antiretroviral treatment (56 patients). Twenty-one subjects underwent multiple phenotyping tests (before and during the course of the treatment). RESULTS: The median MID ratio was 3.51 in the control group (range 0.20-14.6). It was 5-fold higher in the group with efavirenz (28 patients; median, range: 16.0, 3.81-367; P < 0.0001), 13-fold lower with nelfinavir (18 patients; 0.27, 0.06-36.3; P < 0.0001), 17-fold lower with efavirenz + ritonavir (three patients; 0.21, 0.05-0.47; P = 0.006), 50-fold lower with ritonavir (four patients; 0.07, 0.06-0.17; P = 0.0007), and 7-fold lower with nevirapine + (ritonavir or nelfinavir or grapefruit juice) (three patients; 0.48, 0.03-1.83; P = 0.03). CYP3A activity was lower in the efavirenz + ritonavir group (P = 0.01) and in the ritonavir group (P = 0.04) than in the nelfinavir group, although already strongly inhibited in the latter. CONCLUSION: The low-dose MID phenotyping test was successfully used to measure the in vivo variations of CYP3A activity induced by antiretroviral drugs. Efavirenz strongly induces CYP3A activity, while ritonavir almost completely inhibits it. Nelfinavir strongly decreases CYP3A activity, but to a lesser extent than ritonavir. The inhibition of CYP3A by ritonavir or nelfinavir offsets the inductive effects of efavirenz or nevirapine administered concomitantly. Finally, no induction of CYP3A activity was noticeable after long-term administration of ritonavir at low dosages (200 mg/day b.i.d.) or of nelfinavir at standard dosages (2,500 mg/day b.i.d.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: We investigated whether the oral administration of a low dose (75 micro g) of midazolam, a CYP3A probe, can be used to measure the in vivo CYP3A activity. METHODS: Plasma concentrations of midazolam, 1'OH-midazolam and 4'OH-midazolam were measured after the oral administration of 7.5 mg and 75 micro g midazolam in 13 healthy subjects without medication, in four subjects pretreated for 2 days with ketoconazole (200 mg b.i.d.), a CYP3A inhibitor, and in four subjects pretreated for 4 days with rifampicin (450 mg q.d.), a CYP3A inducer. RESULTS: After oral administration of 75 micro g midazolam, the 30-min total (unconjugated + conjugated) 1'OH-midazolam/midazolam ratios measured in the groups without co-medication, with ketoconazole and with rifampicin were (mean+/-SD): 6.23+/-2.61, 0.79+/-0.39 and 56.1+/-12.4, respectively. No side effects were reported by the subjects taking this low dose of midazolam. Good correlations were observed between the 30-min total 1'OH-midazolam/midazolam ratio and midazolam clearance in the group without co-medication (r(2)=0.64, P<0.001) and in the three groups taken together (r(2)=0.91, P<0.0001). Good correlations were also observed between midazolam plasma levels and midazolam clearance, measured between 1.5 h and 4 h. CONCLUSION: A low oral dose of midazolam can be used to phenotype CYP3A, either by the determination of total 1'OH-midazolam/midazolam ratios at 30 min or by the determination of midazolam plasma levels between 1.5 h and 4 h after its administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pharmacokinetic variability in drug levels represent for some drugs a major determinant of treatment success, since sub-therapeutic concentrations might lead to toxic reactions, treatment discontinuation or inefficacy. This is true for most antiretroviral drugs, which exhibit high inter-patient variability in their pharmacokinetics that has been partially explained by some genetic and non-genetic factors. The population pharmacokinetic approach represents a very useful tool for the description of the dose-concentration relationship, the quantification of variability in the target population of patients and the identification of influencing factors. It can thus be used to make predictions and dosage adjustment optimization based on Bayesian therapeutic drug monitoring (TDM). This approach has been used to characterize the pharmacokinetics of nevirapine (NVP) in 137 HIV-positive patients followed within the frame of a TDM program. Among tested covariates, body weight, co-administration of a cytochrome (CYP) 3A4 inducer or boosted atazanavir as well as elevated aspartate transaminases showed an effect on NVP elimination. In addition, genetic polymorphism in the CYP2B6 was associated with reduced NVP clearance. Altogether, these factors could explain 26% in NVP variability. Model-based simulations were used to compare the adequacy of different dosage regimens in relation to the therapeutic target associated with treatment efficacy. In conclusion, the population approach is very useful to characterize the pharmacokinetic profile of drugs in a population of interest. The quantification and the identification of the sources of variability is a rational approach to making optimal dosage decision for certain drugs administered chronically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CD44 adhesion receptor is silenced in highly malignant neuroblastomas (NBs) with MYCN amplification. Because its functional expression is associated with decreased tumorigenic properties, CD44 behaves as a tumor suppressor gene in NB and other cancers. Given that the precise mechanisms responsible for CD44 silencing are not elucidated, we investigated whether CD44 expression could be regulated by DNA hypermethylation. The methylation status of CD44 gene promoter and exon 1 regions was analyzed in 12 NB cell lines and 21 clinical samples after bisulfite genomic modification, followed by PCR and single-strand conformation polymorphism analysis and genomic sequencing. The results showed that almost all CD44-negative cell lines displayed hypermethylation in both regions, whereas all CD44-expressing cell lines were unmethylated. These observations correlated with the ability to restore CD44 mRNA and protein expression by treatment of CD44-negative cells with the 5-aza-2'-deoxycytidine demethylating agent. In contrast, no CD44 gene hypermethylation could be detected in 21 NB clinical samples of different stages, irrespective of CD44 expression. Although our results suggest that aberrant methylation of promoter and exon 1 regions is involved in CD44 silencing in NB cell lines, they also indicate that methylation of unidentified regulatory sequences or methylation-independent mechanisms also control the expression of CD44 in primary NB tumors and cell lines. We therefore conclude that CD44 silencing is controlled by complex and tumor cell-specific processes, including gene hypermethylation. Further investigation of other mechanisms and genes involved in CD44 regulation will be needed before demethylation-mediated reactivation of the CD44 gene can be considered as therapeutic strategy for neuroblastoma and perhaps other related cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methadone inhibits the cardiac potassium channel hERG and can cause a prolonged QT interval. Methadone is chiral but its therapeutic activity is mainly due to (R)-methadone. Whole-cell patch-clamp experiments using cells expressing hERG showed that (S)-methadone blocked the hERG current 3.5-fold more potently than (R)-methadone (IC50s (half-maximal inhibitory concentrations) at 37 degrees C: 2 and 7 microM). As CYP2B6 slow metabolizer (SM) status results in a reduced ability to metabolize (S)-methadone, electrocardiograms, CYP2B6 genotypes, and (R)- and (S)-methadone plasma concentrations were obtained for 179 patients receiving (R,S)-methadone. The mean heart-rate-corrected QT (QTc) was higher in CYP2B6 SMs (*6/*6 genotype; 439+/-25 ms; n=11) than in extensive metabolizers (non *6/*6; 421+/-25 ms; n=168; P=0.017). CYP2B6 SM status was associated with an increased risk of prolonged QTc (odds ratio=4.5, 95% confidence interval=1.2-17.7; P=0.03). This study reports the first genetic factor implicated in methadone metabolism that may increase the risk of cardiac arrhythmias and sudden death. This risk could be reduced by the administration of (R)-methadone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: Recent in vitro studies have suggested an important role of cytochrome P450 (CYP) 2B6 and CYP2C19 in methadone metabolism. We aimed to determine the influence of CYP2B6, CYP2C9, and CYP2C19 genetic polymorphism on methadone pharmacokinetics and on the response to treatment. METHODS: We included 209 patients in methadone maintenance treatment on the basis of their response to treatment and their daily methadone dose. Patients were genotyped for CYP2B6, CYP2C9, and CYP2C19. Steady-state trough and peak (R)-, (S)-, and (R,S)-plasma levels and peak-to-trough plasma level ratios were measured. RESULTS: CYP2B6 genotype influences (S)-methadone and, to a lesser extent, (R)-methadone plasma levels, with the median trough (S)-methadone plasma levels being 105, 122, and 209 ng . kg/mL . mg for the noncarriers of allele *6, heterozygous carriers, and homozygous carriers (*6/*6), respectively (P = .0004). CYP2C9 and CYP2C19 genotypes do not influence methadone plasma levels. Lower peak and trough plasma levels of methadone and higher peak-to-trough ratios were measured in patients considered as nonresponders [median (R,S)-methadone trough plasma levels of 183 and 249 ng . kg/mL . mg (P = .0004) and median peak-to-trough ratios of 1.82 and 1.58 for high-dose nonresponders and high-dose responders, respectively (P = .0003)]. CONCLUSION: Although CYP2B6 influences (S)-methadone plasma levels, given that only (R)-methadone contributes to the opioid effect of this drug, a major influence of CYP2B6 genotype on response to treatment is unlikely and has not been shown in this study. Lower plasma levels of methadone in nonresponders, suggesting a higher clearance, and higher peak-to-trough ratios, suggesting a shorter elimination half-life, are in agreement with the usual clinical measures taken for such patients, which are to increase methadone dosages and to split the daily dose into several intakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathogenesis of hepatosplenic T-cell lymphoma (HSTL), a rare entity mostly derived from γδ T cells and usually with a fatal outcome, remains largely unknown. In this study, HSTL samples (7γδ and 2αβ) and the DERL2 HSTL cell line were subjected to combined gene-expression profiling and array-based comparative genomic hybridization. Compared with other T-cell lymphomas, HSTL had a distinct molecular signature irrespective of TCR cell lineage. Compared with peripheral T-cell lymphoma, not otherwise specified and normal γδ T cells, HSTL overexpressed genes encoding NK-cell-associated molecules, oncogenes (FOS and VAV3), the sphingosine-1-phosphatase receptor 5 involved in cell trafficking, and the tyrosine kinase SYK, whereas the tumor-suppressor gene AIM1 (absent in melanoma 1) was among the most down-expressed. We found highly methylated CpG islands of AIM1 in DERL2 cells, and decitabine treatment induced a significant increase in AIM1 transcripts. Syk was present in HSTL cells and DERL2 cells contained phosphorylated Syk and were sensitive to a Syk inhibitor in vitro. Genomic profiles confirmed recurrent isochromosome 7q (n = 6/9) without alterations at the SYK and AIM1 loci. Our results identify a distinct molecular signature for HSTL and highlight oncogenic pathways that offer rationale for exploring new therapeutic options such as Syk inhibitors and demethylating agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epigenetic mechanisms such as DNA methylation and histone modification are important in stem cell differentiation. Methylation is principally associated with transcriptional repression, and histone acetylation is correlated with an active chromatin state. We determined the effects of these epigenetic mechanisms on adipocyte differentiation in mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (ADSCs) using the chromatin-modifying agents trichostatin A (TSA), a histone deacetylase inhibitor, and 5-aza-2′-deoxycytidine (5azadC), a demethylating agent. Subconfluent MSC cultures were treated with 5, 50, or 500 nM TSA or with 1, 10, or 100 µM 5azadC for 2 days before the initiation of adipogenesis. The differentiation was quantified and expression of the adipocyte genes PPARG and FABP4 and of the anti-adipocyte gene GATA2 was evaluated. TSA decreased adipogenesis, except in BM-MSCs treated with 5 nM TSA. Only treatment with 500 nM TSA decreased cell proliferation. 5azadC treatment decreased proliferation and adipocyte differentiation in all conditions evaluated, resulting in the downregulation of PPARG and FABP4 and the upregulation of GATA2. The response to treatment was stronger in ADSCs than in BM-MSCs, suggesting that epigenetic memories may differ between cells of different origins. As epigenetic signatures affect differentiation, it should be possible to direct the use of MSCs in cell therapies to improve process efficiency by considering the various sources available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La méthylation de l'ADN est l'une des modifications épigénétiques au niveau des îlots CpG. Cette modification épigénétique catalysée par les ADN méthyltransférases (DNMTs) consiste en la méthylation du carbone 5' d’une cytosine ce qui aboutit à la formation de 5-méthylcytosine. La méthylation de l'ADN est clairement impliquée dans l'inactivation des gènes et dans l'empreinte génétique. Elle est modulée par la nutrition, en particulier par les donneurs de méthyle et par une restriction protéique. Ces modifications épigénétiques persistent plus tard dans la vie et conduisent au développement de nombreuses pathologies telles que le syndrome métabolique et le diabète de type 2. En fait, de nombreux gènes clés subissent une modification de leur état de méthylation en présence des composants du syndrome métabolique. Cela montre que la méthylation de l'ADN est un processus important dans l'étiologie du syndrome métabolique. Le premier travail de ce doctorat a porté sur la rédaction d’un article de revue qui a examiné le cadre central du syndrome métabolique et analyser le rôle des modifications épigénétiques susceptibles d'influer sur l'apparition du stress oxydant et des complications cardiométaboliques. D’autre part, les cellules intestinales Caco-2/15, qui ont la capacité de se différencier et d’acquérir les caractéristiques physiologiques de l'intestin grêle, ont été utilisées et traitées avec du Fer-Ascorbate pour induire un stress oxydant. Le Fer-Ascorbate a induit une augmentation significative de l’inflammation et de la peroxydation des lipides (malondialdehyde) ainsi que des altérations de de la défense antioxydante (SOD2 et GPx) accompagnées de modifications épigénétiques. De plus, la pré-incubation des cellules avec de la 5-aza-2'-désoxycytidine, un agent de déméthylation et/ou l’antioxydant Trolox a normalisé la défense antioxydante, réduit la peroxydation des lipides et prévenu l'inflammation. Ce premier travail a démontré que les modifications du redox et l’inflammation induites par le Fer-Ascorbate peuvent impliquer des changements épigénétiques, plus particulièrement des changements dans la méthylation de l’ADN. Pour mieux définir l’impact du stress oxydant au niveau nutritionnel, des cochons d’Inde âgés de trois jours ont été séparés en trois groupes : 1) Témoins: alimentation régulière; 2) Nutrition parentérale (NP) 3) H2O2 : Témoins + 350 uM H2O2. Après quatre jours, pour un groupe, les perfusions ont été stoppées et les animaux sacrifiés pour la collecte des foies. Pour l’autre groupe d’animaux, les perfusions ont été arrêtées et les animaux ont eu un accès libre à une alimentation régulière jusqu'à la fin de l’étude, huit semaines plus tard où ils ont été sacrifiés pour la collecte des foies. Ceci a démontré qu’à une semaine de vie, l'activité DNMT et les niveaux de 5'-méthyl-2'-désoxycytidine étaient inférieurs pour les groupes NP et H2O2 par rapport aux témoins. A neuf semaines de vie, l’activité DNMT est restée basse pour le groupe NP alors que les niveaux de 5'-méthyl-2'-désoxycytidine étaient plus faibles pour les groupes NP et H2O2 par rapport aux témoins. Ce travail a démontré que l'administration de NP ou de H2O2, tôt dans la vie, induit une hypométhylation de l'ADN persistante en raison d'une inhibition de l'activité DNMT. Finalement, des souris ayant reçu une diète riche en gras et en sucre (HFHS) ont été utilisées comme modèle in vivo de syndrome métabolique. Les souris ont été nourris soit avec un régime standard chow (témoins), soit avec une diète riche en gras et en sucre (HFHS) ou avec une diète HFHS en combinaison avec du GFT505 (30 mg/kg), un double agoniste de PPARα et de PPARδ, pendant 12 semaines. La diète HFHS était efficace à induire un syndrome métabolique étant donnée l’augmentation du poids corporel, du poids hépatique, des adiposités viscérales et sous-cutanées, de l’insensibilité à l’insuline, des lipides plasmatiques et hépatiques, du stress oxydant et de l’inflammation au niveau du foie. Ces perturbations étaient accompagnées d’une déficience dans l’expression des gènes hépatiques PPARα et PPARγ concomitant avec une hyperméthylation de leurs promoteurs respectifs. L’ajout de GFT505 à la diète HFHS a empêché la plupart des effets cardiométaboliques induits par la diète HFHS via la modulation négative de l’hyperméthylation des promoteurs, résultant en l’augmentation de l’expression des gènes hépatiques PPARα et PPARγ. En conclusion, GFT505 exerce des effets métaboliques positifs en améliorant le syndrome métabolique induit par l'alimentation HFHS via des modifications épigénétiques des gènes PPARs. Ensemble, les travaux de cette thèse ont démontré que le stress oxydant provenant de la nutrition induit d’importants changements épigénétiques pouvant conduire au développement du syndrome métabolique. La nutrition apparait donc comme un facteur crucial dans la prévention de la reprogrammation fœtale et du développement du syndrome métabolique. Puisque les mécanismes suggèrent que le stress oxydant agit principalement sur les métabolites du cycle de la méthionine pour altérer l’épigénétique, une supplémentation en ces molécules ainsi qu’en antioxydants permettrait de restaurer l’équilibre redox et épigénétique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA methyltransferases of type Dnmt2 are a highly conserved protein family with enigmatic function. The aim of this work was to characterize DnmA, the Dnmt2 methyltransferase in Dictyostelium discoideum, and further to investigate its implication in DNA methylation and transcriptional gene silencing. The genome of the social amoeba Dictyostelium encodes DnmA as the sole DNA methyltransferase. The enzyme bears all ten characteristic DNA methyltransferase motifs in its catalytic domain. The DnmA mRNA was found by RT-PCR to be expressed during vegetative growth and down regulated during development. Investigations using fluorescence microscopy showed that both DnmA-myc and DnmA-GFP fusions predominantly localised to the nucleus. The function of DnmA remained initially unclear, but later experiment revealed that the enzyme is an active DNA methyltransferase responsible for all DNA (cytosine) methylation in Dictyostelium. Neither in gel retardation assays, nor by the yeast two hybrid system, clues on the functionality of DnmA could be obtained. However, immunological detection of the methylation mark with an α - 5mC antibody gave initial evidence that the DNA of Dictyostelium was methylated. Furthermore, addition of 5-aza-cytidine as demethylating agent to the Dictyostelium medium and subsequent in vitro incubation of the DNA isolated from these cells with recombinant DnmA showed that the enzyme binds slightly better to this target DNA. In order to investigate further the function of the protein, a gene knock-out for dnmA was generated. The gene was successfully disrupted by homologous recombination, the knock-out strain, however, did not show any obvious phenotype under normal laboratory conditions. To identify specific target sequences for DNA methylation, a microarray analysis was carried out. Setting a threshold of at least 1.5 fold for differences in the strength of gene expression, several such genes in the knock-out strain were chosen for further investigation. Among the up-regulated genes were the ESTs representing the gag and the RT genes respectively of the retrotransposon skipper. In addition Northern blot analysis confirmed the up-regulation of skipper in the DnmA knock-out strain. Bisufite treatment and sequencing of specific DNA stretches from skipper revealed that DnmA is responsible for methylation of mostly asymmetric cytosines. Together with skipper, DIRS-1 retrotransposon was found later also to be methylated but was not present on the microarray. Furthermore, skipper transcription was also up-regulated in strains that had genes disrupted encoding components of the RNA interference pathway. In contrast, DIRS 1 expression was not affected by a loss of DnmA but was strongly increased in the strain that had the RNA directed RNA polymerase gene rrpC disrupted. Strains generated by propagating the usual wild type Ax2 and the DnmA knock-out cells over 16 rounds in development were analyzed for transposon activity. Northern blot analysis revealed activation for skipper expression, but not for DIRS-1. A large number of siRNAs were found to be correspondent to the DIRS-1 sequence, suggesting concerted regulation of DIRS-1 expression by RNAi and DNA methylation. In contrast, no siRNAs corresponding to the standard skipper element were found. The data show that DNA methylation plays a crucial role in epigenetic gene regulation in Dictyostelium and that different, partially overlapping mechanisms control transposon silencing for skipper and DIRS-1. To elucidate the mechanism of targeting the protein to particular genes in the Dictyostelium genome, some more genes which were up-regulated in the DnmA knock-out strain were analyzed by bisulfite sequencing. The chosen genes are involved in the multidrug response in other species, but their function in Dictyostelium is uncertain. Bisulfite data showed that two of these genes were methylated at asymmetrical C-residues in the wild type, but not in DnmA knock-out cells. This suggested that DNA methylation in Dictyostelium is involved not only in transposon regulation but also in transcriptional silencing of specific genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)