933 resultados para N-Body Potential
Resumo:
Based on the embedded atom method (EAM) proposed by Daw and Baskes and Johnson's model, this paper constructs a new N-body potential for bcc crystal Mo. The procedure of constructing the new N-body potential can be applied to other metals. The dislocation emission from a crack tip has been simulated successfully using molecular dynamics method, the result is in good agreement with the elastic solution.
Resumo:
Molecular dynamics has been employed to model the fracture of a twodimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.
Resumo:
Molecular dynamics has been employed to model the fracture of a two dimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The gliding behavior of edge dislocation near a grain boundary(QB) in copper under pure shear stresses is simulated by using molecular dynamics(MD) method. Many-body potential incorporating the embedded atom method (EAM) is used. The critical shear stresses for a single disocation to pass across GB surface are obtained at values of sigma(c)=23MPa similar to 68 MPa and 137 MPa similar to 274 MPa for Sigma=165 small angle tilt GB at 300 K and 20 K, respectively. The first result agrees with the experimental yield stress sigma(y)(=42 MPa) quite well. It suggests that there might be one of the reasons of initial plastic yielding caused by single dislocation gliding across GB. In addition, there might be possibility to obtain yield strength from microscopic analysis. Moreover, the experimental value of sigma(y) at low temperature is generally higher than that at room temperature. So, these results are in conformity qualitatively with experimental fact. On the other hand, the Sigma=25 GB is too strong an obstacle to the dislocation. In this case, a dislocation is able to pass across GB under relatively low stress only when it is driven by other dislocations. This is taken to mean that dislocation pile-up must be built up in front of this kind of GB, if this GB may take effect on the process of plastic deformation.
Resumo:
晶界结构在高温下的热稳定性问题是一个长期争论而又未能解决的问题,其争论的焦点是:在远低于熔点的温度下,晶界结构是否发生了可观察到的无序化,即是否存在一个远低于熔点的结构转化温度。为了能澄清这一争论,本文系统地研究了晶界结构的热稳定性。为了消除相互作用势的影响和系统误差,本文首先采用Morse势和经验多体势分别对铝、铜单晶的熔化过程进行了分子动力学模拟。在平衡态下,通过计算表征结构无序化的静态结构因子、径向分布函数和单晶原子位形图,获得了铝、铜单晶的熔点,结果表明:多体势计算的铝和铜的单晶熔点更接近实验值。因此,采用经验多体势应用分子动力学方法分别模拟了铝、铜Σ3、Σ5、Σ9、Σ11、Σ19、Σ33六种对称倾侧双晶晶界晶界结构由有序向无序转化的过程,计算了平衡态下的表征结构无序化的静态结构因子、径向分布函数和晶界原子位形图并将多体势获得的铝、铜单晶熔点作为晶界结构转化温度的约化熔点,获得了铝、铜Σ3、Σ5、Σ9、Σ11、Σ19、Σ33六种对称倾侧双晶晶界结构的转化温度和熔点,结果表明:1.Σ5、Σ9、Σ11、Σ19、Σ33五种对称倾侧双晶晶界均在远低于单晶熔点温度时,晶界结构发生了可观察到的无序化,而且双晶晶界结构的转变温度相差不大,双晶晶界熔点也低于单晶熔点。2.Σ3晶界在温度远低于熔点时,其晶界结构没有发生可观察到的无序化;Σ3晶界的转化温度与单晶熔点接近。所以,可以认为Σ3晶界不存在转化温度。这是由于Σ3晶界为共格孪晶,具有较低的能量。综上所述,除Σ3共格孪晶外,在远低于熔点温度下,晶界结构发生了可观察到的无序化,即:存在一个远低于熔点的转化温度,此时其静态结构因子约为0.5左右;晶界结构的熔点均低于单晶熔点,此时其静态结构因子约为0.15左右。从全文模拟结果可以看出,静态结构因子、径向分布函数、晶界原子位形图三种方法在确定晶界的结构转化温度和熔点时,静态结构因子是最有效、最准确的定量方法。
Resumo:
ABSTRACT Recently, people are confused with two opposite variations of elastic modulus with decreasing size of nano scale sample: elastic modulus either decreases or increases with decreas- ing sample size. In this paper, based on intermolecular potentials and a one dimensional model, we provide a unified understanding of the two opposite size effects. Firstly, we analyzed the mi- crostructural variation near the surface of an fcc nanofilm based on the Lennard-Jones potential. It is found that the atomic lattice near the surface becomes looser in comparison with the bulk, indicating that atoms in the bulk are located at the balance of repulsive forces, resulting in the decrease of the elastic moduli with the decreasing thickness of the film accordingly. In addition, the decrease in moduli should be attributed to both the looser surface layer and smaller coor- dination number of surface atoms. Furthermore, it is found that both looser and tighter lattice near the surface can appear for a general pair potential and the governing mechanism should be attributed to the surplus of the nearest force to all other long range interactions in the pair po- tential. Surprisingly, the surplus can be simply expressed by a sum of the long range interactions and the sum being positive or negative determines the looser or tighter lattice near surface re- spectively. To justify this concept, we examined ZnO in terms of Buckingham potential with long range Coulomb interactions. It is found that compared to its bulk lattice, the ZnO lattice near the surface becomes tighter, indicating the atoms in the bulk located at the balance of attractive forces, owing to the long range Coulomb interaction. Correspondingly, the elastic modulus of one- dimensional ZnO chain increases with decreasing size. Finally, a kind of many-body potential for Cu was examined. In this case, the surface layer becomes tighter than the bulk and the modulus increases with deceasing size, owing to the long range repulsive pair interaction, as well as the cohesive many-body interaction caused by the electron redistribution.
Resumo:
Mycobacterium tuberculosis is one of the most successful human pathogens. It kills every year approximately 1.5 - 2 million people, and at present a third of the human population is estimated to be infected. Fortunately, only a relatively small proportion of the infected individuals will progress to active disease, and most will maintain a latent infection. Although a latent infection is clinically silent and not contagious, it can reactivate to cause highly contagious pulmonary tuberculosis, the most prevalent form of the disease in adults. Therefore, a thorough understanding of latency and reactivation may help to develop novel control strategies against tuberculosis. The most widely held view is that the mycobacteria are imprisoned in granulomatous structures during latency, where they can survive in a non-replicating, dormant form until reactivation occurs. However, there is no hard data to sustain that the reactivating mycobacteria are indeed those that laid dormant within the granulomas. In this review an alternative model, based on evidence from early studies, as well as recent reports is presented, in which the latent mycobacteria reside outside granulomas, within non-macrophage cell types throughout the infected body. Potential implications for new diagnostic and vaccine design are discussed.
Resumo:
A novel multi-scale seamless model of brittle-crack propagation is proposed and applied to the simulation of fracture growth in a two-dimensional Ag plate with macroscopic dimensions. The model represents the crack propagation at the macroscopic scale as the drift-diffusion motion of the crack tip alone. The diffusive motion is associated with the crack-tip coordinates in the position space, and reflects the oscillations observed in the crack velocity following its critical value. The model couples the crack dynamics at the macroscales and nanoscales via an intermediate mesoscale continuum. The finite-element method is employed to make the transition from the macroscale to the nanoscale by computing the continuum-based displacements of the atoms at the boundary of an atomic lattice embedded within the plate and surrounding the tip. Molecular dynamics (MD) simulation then drives the crack tip forward, producing the tip critical velocity and its diffusion constant. These are then used in the Ito stochastic calculus to make the reverse transition from the nanoscale back to the macroscale. The MD-level modelling is based on the use of a many-body potential. The model successfully reproduces the crack-velocity oscillations, roughening transitions of the crack surfaces, as well as the macroscopic crack trajectory. The implications for a 3-D modelling are discussed.
Resumo:
An integration by parts formula is derived for the first order differential operator corresponding to the action of translations on the space of locally finite simple configurations of infinitely many points on Rd. As reference measures, tempered grand canonical Gibbs measures are considered corresponding to a non-constant non-smooth intensity (one-body potential) and translation invariant potentials fulfilling the usual conditions. It is proven that such Gibbs measures fulfill the intuitive integration by parts formula if and only if the action of the translation is not broken for this particular measure. The latter is automatically fulfilled in the high temperature and low intensity regime.
Resumo:
To provide a brief review of the development of cardiopulmonary bypass. A review of the literature on the development of extracorporeal circulation techniques, their essential role in cardiovascular surgery, and the complications associated with their use, including hemolysis and inflammation. The advancement of extracorporeal circulation techniques has played an essential role in minimizing the complications of cardiopulmonary bypass, which can range from various degrees of tissue injury to multiple organ dysfunction syndrome. Investigators have long researched the ways in which cardiopulmonary bypass may insult the human body. Potential solutions arose and laid the groundwork for development of safer postoperative care strategies. Steady progress has been made in cardiopulmonary bypass in the decades since it was first conceived of by Gibbon. Despite the constant evolution of cardiopulmonary bypass techniques and attempts to minimize their complications, it is still essential that clinicians respect the particularities of each patient's physiological function.