981 resultados para Núcleo septal lateral
Resumo:
El núcleo septal lateral forma parte de estructuras subcorticales del cerebro. La destrucción de dicho núcleo genera lo que se conoce como síndrome de furia septal. En este trabajo demostramos que el agonista GABAérgico muscimol, en dosis no sedativas, indujo una “inhibición del miedo" en ratas macho de la cepa Sprague- Dawley, asociada a un aumento de respuestas agresivas a objetos habitualmente neutros. Estos resultados, sumados al hecho de que el núcleo septal lateral participa en diversas entidades psiquiátricas, hace que sea interesante aportar al conocimiento de su función apelando a moduladores que se sabe están presentes en el en dicha estructura del sistema nervioso central.
Resumo:
The thalamus plays an important role in the sensorial processing information, in this particular case, the visual information. Several neuronal groups have been characterized as conductors and processors of important sensorial information to the cerebral cortex. The lateral geniculate complex is one to them, and appears as a group very studied once it is responsible, in almost all totality, for the processing of visual information. Among the nuclei that constitute the lateral geniculate complex we highlight the dorsal lateral geniculate nucleus of the thalamus (DLG), the main thalamic relay for the visual information. This nucleus is located rostral and lateral to medial geniculate nucleus and ventral to thalamic pulvinar nucleus in most of the mammals. In the primates humans and non-humans, it presents as a laminate structure, arranged in layers, when observed in coronal sections. The objective of this work was to do a mapping of the retinal projections and a citoarchictetonic and neurochemical characterization of DLG in the marmoset (Callithrix jacchus), a New World primate. The retinal projections were traced by anterograde transport of subunit b of cholera toxin (CTb), the citoarchicteture was described by Nissl method, and to neurochemical characterization immunohistochemicals technical were used to examine the main neurotransmitters and neuroatives substances present in this neural center. In DGL of marmoset thalamus, in coronal sections labeled by Nissl method, was possible to visualize the division of this nucleus in four layers divided in two portions: magnocellular and parvocellular. The retinal projections were present being visualized fibers and terminals immunorreactives to CTb (IR-CTb) in the DLG ipsilateral and contralateral. And through the immunohistochemicals techniques was observed that DLG contain cells, fibers and/or terminals immunoreactives against neuronal nuclear protein, subunits of AMPA 15 glutamate receptors (GluR1, GluR2/3, GluR4), choline acetyltransferase, serotonin, glutamic acid decarboxylase, binding calcium proteins (calbindin, parvalbumin and calretinin), vasopressin, vasoactive intestinal polypeptide, and an astrocyte protein, glial fibrillary acidic protein.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Fisiológicas - FOA
Resumo:
O núcleo parabraquial lateral (NPBL) e o núcleo Kölliker-Fuse (KF) são os mais importantes núcleos da ponte envolvidos com o controle da ventilação pulmonar (VE) e são conhecidos como grupo respiratório pontino ou centro pneumotáxico. Vários experimentos demonstraram que a estimulação ou a lesão do NPBL-KF produziram alterações nos padrões respiratórios. No entanto, ainda não estava claro qual seria a área exata (no complexo NPBL-KF) e o neurotransmissor envolvido nas alterações respiratórias. Estudos com imunohistoquímica demonstraram a presença de receptores purinérgicos (especialmente os P2X) em várias áreas envolvidas com o controle da ventilação, incluindo o NPBL. Estudos também demonstraram a presença de um denso plexo de varicosidades imunorreativas para o GABA ao longo do complexo NPB-KF, sendo que o processamento neural nessa região estaria sob forte inibição gabaérgica. No entanto, o papel dos receptores purinérgicos e gabaérgicos do NPBL na regulação da VE em ratos não anestesiados ainda não tinha sido investigado. Desta forma, no presente estudo investigamos as respostas ventilatórias após a injeção do α,β-metil-ATP (agonista purinérgico), do PPADS (antagonista purinérgico) e do muscimol (agonista GABA-A) no NPBL de ratos não anestesiados. Foram utilizados ratos com cânulas de aço inoxidável bilateralmente no NPBL, os animais foram submetidos a pletismografia de corpo inteiro para que fossem obtidas as medidas de VE. As injeções bilaterais do agonista purinérgico, α,β-metil-ATP (2 nmol/0,2 μl, n=8), no NPBL promoveu queda na freqüência respiratória (fR) (108 5 ciclos/min vs basal 137 6 ciclos/min, p = 0,005), não alterou o volume corrente (VT) (2 0,3 ml/kg vs basal 2 0,3 ml/kg, p = 0,967) e queda na VE (263 42 ml.kg-1.min-1 vs basal 325 43 ml.kg-1.min-1, p = 0,001)... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
No sistema nervoso central (SNC), mecanismos excitatórios e inibitórios atuam para controlar a ingestão de água e sódio. Importantes mecanismos inibitórios da ingestão de água e sódio foram recentemente descobertos no núcleo parabraquial lateral (NPBL). Um papel importante do NPBL seria integrar as informações ascendentes da porção medial do núcleo do trato solitário (NTSm) e da área postrema (AP) que por sua vez poderiam influenciar a atividade das áreas prosencefálicas envolvidas no controle do balanço hidroeletrolítico, como núcleos específicos do hipotálamo e amígdala. Estudos prévios sugerem a presença de um importante mecanismo serotonérgico inibitório da ingestão de água e sódio no NPBL. Além do mecanismo serotonérgico também já foi demonstrado no NPBL a existência de um mecanismo colecistocinérgico que também exerce um papel inibitório sobre a ingestão de água e sódio. Em um estudo anterior em que se injetou um agonista e um antagonista inespecíficos de receptores opióides (β-endorfina e naloxona, respectivamente) no NPBL foi demonstrado que mecanismos opióides no NPBL podem modular o mecanismo inibitório da ingestão de água e sódio, porém não se sabia qual ou quais dos três subtipos de receptores opióides (μ, δ ou κ) estariam envolvidos nesse mecanismo... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Nosso organismo constantemente perde água e eletrólitos para o meio ambiente, principalmente pela excreção urinária.Porém, a osmolaridade e o volume de líquidos do organismo devem permanecer dentro de uma pequena faixa de variação para que nossas células funcionem perfeitamente e haja manutenção da pressão arterial. A regulação da osmolaridade e do volume dos líquidos corporais exige que a entrada de água e eletrólitos seja igual à perda pelo corpo e, para tanto, a regulação envolve a ação integrada dos rins e do comportamento de ingestão de água e sódio que é o principal íon extracelular. A ingestão de água e sódio é regulada por mecanismos centrais excitatórios e inibitórios. Os mecanismos excitatórios que desencadeiam a ingestão de água e sódio são ativados principalmente pelo peptídeo angiotensina II (ANG II), cuja produção apresenta-se aumentada em situações de hipovolemia e hipotensão. Por outro lado, destacam-se importantes mecanismos inibitórios da ingestão de água e sódio descobertos recentemente no núcleo parabraquial lateral (NPBL). O NPBL é uma estrutura pontina que recebe projeções aferentes da área postrema (AP) e da porção medial do núcleo do trato solitário (NTSm) e que faz conexões com áreas prosencefálicas envolvidas no controle do balanço hidroeletrolítico. Estudos prévios mostraram que injeções bilaterais do agonista opióide inespecífico β-endorfina no NPBL induziram ingestão de água e sódio em ratos saciados e aumentaram a ingestão de água e sódio induzida pelo tratamento com o diurético furosemida (FURO) combinado com baixas doses do bloqueador da enzima conversora de angiotensina captopril (CAP) injetados subcutaneamente (sc)... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
In this study, we investigated the influence of d(CH2)(5)-Tyr (Me)-AVP (AAVP) an antagonist of V-1 receptors of arginine(8)-vasopressin (AVP) and the effects of losartan and CGP42112A (selective ligands of the AT, and AT, angiotensin receptors, respectively) injections into the paraventricular nucleus (PVN) on the thirst effects of AVP stimulation of the lateral septal area (LSA). AVP injection into the LSA increased the water intake in a dose-dependent manner. AAVP injected into the PVN produced a dose-dependent reduction of the drinking responses elicited by LSA administration of AVP. Both the AT(1) and AT(2) ligands administered into the PVN elicited a concentration-dependent inhibition in the water intake induced by AVP injected into the LSA, but losartan was more effective than CGP42112A the increase in the AVP response. These results indicate that LSA dipsogenic effects induced by AVP are mediated primarily by PVN AT(1) receptors. However, doses of losartan were more effective when combined with CGP42112A than when given alone, suggesting that the thirst induced by AVP injections into LSA may involve activation of multiple angiotensin II (ANG II) receptor subtypes. These results also suggests that facilitatory effects of AVP on water intake into the LSA are mediated through the activation of V-receptors and that the inhibitory effect requires V-receptors. Based on the present findings, we suggest that the administration of AVP into the LSA may play a role in the PVN control of water control. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The pregeniculate nucleus (PGN) of the primate s thalamus is an agglomerate neuronal having a cap shaped located dorsomedially to the main relay visual information to the cerebral cortex, the dorsal lateral geniculate nucleus (GLD). Several cytoarchitectonic, neurochemical and retinal projections studies have pointed PGN as a structure homologous to intergeniculate leaflet (IGL) of rodents. The IGL receives retinal terminals and appears to be involved in the integration of photic and non-photic information relaying them, through geniculo-hypothalamic tract (TGH), to the main circadian oscillator in mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus. Thus, the IGL participates in the control of the biological rhythm by modulating the activity of the SCN. Pharmacological and IGL injury studies conclude that it is critical in the processing of non-photic information which is transmitted to the SCN. Other studies have found that especially neurons immunoreactive to neuropeptide Y (NPY) respond to this type of stimulation, determined by its colocation with the FOS protein. Has not been determined if the PGN responds, expressing the FOS protein, to the non-photic stimulus nor the neurochemical nature of these cells. Thus, we apply a dark pulse in the specifics circadian phases and analyze the pattern of expression of FOS protein in PGN of the marmoset (Callithrix jacchus). We found that in all animals analyzed the FOS expression was higher in the experimental than in the control group. There was a higher expression of FOS when the dark pulse was applied during the subjective day between the groups. Still, a subregion of the PGN, known by immunoreactive to NPY, had a greater number of FOS-positive cells in relation to his other just close dorsal region. Our data corroborate the theory that the PGN and IGL are homologous structures that were anatomically modified during the evolutionary process, but kept its main neurochemical and functional characteristics. However, injury and hodological studies are still needed for a more accurate conclusion
Resumo:
In rodents, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian system. The SCN is considerate the site of an endogenous biological clock because can to generate rhythm and to synchronize to the environmental cues (zeitgebers) and IGL has been related as one of the main areas that modulate the action of SCN. Both receive projections of ganglion cells of retina and this projection to SCN is called retinohypothalamic tract (RHT). Moreover, the IGL is connected with SCN through of geniculohypothalamic tract (GHT). In primates (include humans) was not still demonstrated the presence of a homologous structure to the IGL. It is believed that the pregeniculate nucleus (PGN) can be the answer, but nothing it was still proven. Trying to answer that question, the objective of our study is to do a comparative analysis among PGN and IGL through of techniques immunohystochemicals, neural tracers and FOS expression after dark pulses. For this, we used as experimental model a primate of the new world, the common marmoset (Callithrix jacchus). Ours results may contribute to the elucidation of this lacuna in the circadian system once that the IGL is responsible for the transmission of nonphotic information to SCN and participate in the integration between photic and nonphotic stimulus to adjust the function of the SCN. In this way to find a same structure in primates represent an important achieve in the understanding of the biological rhythms in those animals
Resumo:
Estudios previos del laboratorio han demostrado que la depleción de sodio inducida por diálisis peritoneal (DP) produce una rápida caída en la concentración de sodio del suero y del fluido cerebrospinal entre las 1-4hs después de la DP; sin embargo el apetito específico por el sodio (AS) aparece recién 20 hs después cuando se han recuperado los niveles normales de sodio extracelular quizás por medio de fuentes reservorias del cuerpo como hueso e higado. En nuestros trabajos además hemos identificado las distintas áreas y sistemas neuroquímicos involucrados tanto en la fase apetitiva (24hs después de la DP) como en la fase de saciedad del AS (luego del consumo de NaCl hipertónico inducido por DP). En estos estudios la depleción de sodio incrementó la actividad neuronal, evidenciada mediante la inmunoreactividad a Fos (ir-Fos), a lo largo de los órganos circunventriculares (OCVs) de la lamina terminalis (LT): órgano subfornical (SFO) y órgano vasculoso de la lamina terminalis, y diminuyó ir-Fos de las neuronas serotoninérgicas del núcleo del rafe dorsal (DRN), sugiriendo su participación en la génesis del AS. Por otro lado, durante la fase de saciedad la ir-Fos se incrementó dentro de áreas del tronco encefálico como el núcleo del tracto solitario, área postrema, núcleo parabraquial lateral (LPBN), neuronas serotoninérgicas del DRN y a lo largo de las células oxitocinérgicas hipotalámicas indicando su participación en la inhibición del AS. A pesar del conocimiento acumulado acerca de la regulación central del AS, hasta el momento, no se conocen cuales son los mecanismos, áreas y sistemas neuroquímicos involucrados en la disociación temporal existente entre la depleción de sodio y la aparición del AS. Numerosas líneas de evidencia sugieren que el AS es estimulado por la misma señal molecular que la sed hipovolemica, principalmente angiontensina II (ANGII), pero no se manifiesta porque es bloqueada por una señal inhibitoria dominante. Se sugiere que los efectos estimulatorios de ANGII sobre la ingesta de agua y sodio involucran la interacción con el circuito serotoninérgico (5HT) inhibitorio central. El circuito 5HT central que subyace a esta interacción incluye principalmente conexiones bidireccionales entre los OCVs de la LT donde se estimula la sed y AS y los somas 5HT del DRN y los terminales 5HT presentes en el LPBN donde se inhibiría el AS. Consistente con estos datos, la lesión del DRN y la inyección de antagonistas serotoninérgicos en el LPBN provocan un aumento significativo en el consumo de sodio inducido por distintos modelos experimentales.Nuestros resultados recientes indican que ya a las 2hs luego de la DP se incrementa la actividad de renina plasmática y a nivel central se observa una actividad tónica de las neuronas serotoninérgicas del DRN y la activación simultánea de los OCVs de la LT y de los núcleos de tronco encefálicos, estructuras previamente involucradas tanto en la fase apetitiva como de saciedad respectivamente. Con lo cual, es posible hipotetizar que el sistema 5HT a nivel del tronco (DRN, LPBN) estaría impidiendo el consumo de sodio estimulado por ANGII a las 2hs de la depleción de sodio corporal cuando se produce la caída en la natremia y en la volemia pero el AS no se manifiesta. De acuerdo con esto nos proponemos evaluar el efecto de una lesión transitoria y reversible del DRN, y el antagonismo del sistema 5HT a nivel del LPBN a las 2hs de realizada la DP sobre la ingesta de sodio. Además, se utilizará la técnica de registro electrofisiológico in vivo que nos permitirá estudiar la interconexión sináptica funcional entre el DRN y el SFO ante la infusión icv de ANGII. Esperamos observar un incremento en el consumo de sodio 2hs después de la DP, producido por el bloqueo transitorio o antagonismo del sistema serotoninérgico en el DRN o LPBN respectivamente. Además creemos posible que disminuya la actividad eléctrica de las neuronas 5HT del DRN que son moduladas por el SFO ante la inyección icv de AII.
Resumo:
Processing in the visual system starts in the retina. Its complex network of cells with different properties enables for parallel encoding and transmission of visual information to the lateral geniculate nucleus (LGN) and to the cortex. In the retina, it has been shown that responses are often accompanied by fast synchronous oscillations (30 - 90 Hz) in a stimulus-dependent manner. Studies in the frog, rabbit, cat and monkey, have shown strong oscillatory responses to large stimuli which probably encode global stimulus properties, such as size and continuity (Neuenschwander and Singer, 1996; Ishikane et al., 2005). Moreover, simultaneous recordings from different levels in the visual system have demonstrated that the oscillatory patterning of retinal ganglion cell responses are transmitted to the cortex via the LGN (Castelo-Branco et al., 1998). Overall these results suggest that feedforward synchronous oscillations contribute to visual encoding. In the present study on the LGN of the anesthetized cat, we further investigate the role of retinal oscillations in visual processing by applying complex stimuli, such as natural visual scenes, light spots of varying size and contrast, and flickering checkerboards. This is a necessary step for understanding encoding mechanisms in more naturalistic conditions, as currently most data on retinal oscillations have been limited to simple, flashed and stationary stimuli. Correlation analysis of spiking responses confirmed previous results showing that oscillatory responses in the retina (observed here from the LGN responses) largely depend on the size and stationarity of the stimulus. For natural scenes (gray-level and binary movies) oscillations appeared only for brief moments probably when receptive fields were dominated by large continuous, flat-contrast surfaces. Moreover, oscillatory responses to a circle stimulus could be broken with an annular mask indicating that synchronization arises from relatively local interactions among populations of activated cells in the retina. A surprising finding in this study was that retinal oscillations are highly dependent on halothane anesthesia levels. In the absence of halothane, oscillatory activity vanished independent of the characteristics of the stimuli. The same results were obtained for isoflurane, which has similar pharmacological properties. These new and unexpected findings question whether feedfoward oscillations in the early visual system are simply due to an imbalance between excitation and inhibition in the retinal networks generated by the halogenated anesthetics. Further studies in awake behaving animals are necessary to extend these conclusions
Resumo:
The primary and accessory optic systems comprise two set of retinorecipient neural clusters. In this study, these visual related centers in the rock cavy were evaluated by using the retinal innervations pattern and Nissl staining cytoarchigtecture. After unilateral intraocular injection of cholera toxin B subunit and immunohistochemical reaction of coronal and sagittal sections from the diencephalon and midbrain region of rock cavy. Three subcortical centres of primary visual system were identified, superior colliculus, lateral geniculate complex and pretectal complex. The lateral geniculate complex is formed by a series of nuclei receiving direct visual information from the retina, dorsal lateral geniculate nucleus, intergeniculate leaflet and ventral lateral geniculate nucleus. The pretectal complex is formed by series of pretectal nuclei, medial pretectal nucleus, olivary pretectal nucleus, posterior pretectal nucleus, nucleus of the optic tract and anterior pretectal nucleus. In the accessory optic system, retinal terminals were observed in the dorsal terminal, lateral terminal and medial terminal nuclei as well as in the interstitial nucleus of the superior fasciculus, posterior fibres. All retinorecipient nuclei received bilateral input, with a contralateral predominance. This is the first study of this nature in the rock cavy and the results are compared with the data obtained for other species. The investigation represents a contribution to the knowledge regarding the organization of visual optic systems in relation to the biology of species.