21 resultados para Myxococcus-xanthus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myxococcus xanthus is a Gram-negative soil bacterium that undergoes multicellular development when high-density cells are starved on a solid surface. Expression of the 4445 gene, predicted to encode a periplasmic protein, commences 1.5 h after the initiation of development and requires starvation and high density conditions. Addition of crude or boiled supernatant from starving high-density cells restored 4445 expression to starving low-density cells. Addition of L-threonine or L-isoleucine to starving low-density cells also restored 4445 expression, indicating that the high-density signaling activity present in the supernatant might be composed of extracellular amino acids or small peptides. To investigate the circuitry integrating these starvation and high-density signals, the cis- and trans-acting elements controlling 4445 expression were identified. The 4445 transcription start site was determined by primer extension analysis to be 58 by upstream of the predicted translation start site. The promoter region contained a consensus sequence characteristic of e&barbelow;xtrac&barbelow;ytoplasmic f&barbelow;unction (ECF) sigma factor-dependent promoters, suggesting that 4445 expression might be regulated by an ECF sigma factor-dependent pathway, which are known to respond to envelope stresses. The small size of the minimum regulatory region, identified by 5′-end deletion analysis as being only 66 by upstream of the transcription start site, suggests that RNA polymerase could be the sole direct regulator of 4445 expression. To identify trans-acting negative regulators of 4445 expression, a strain containing a 4445-lacZ was mutagenized using the Himar1-tet transposon. The four transposon insertions characterized mapped to an operon encoding a putative ECF sigma factor, ecfA; an anti-sigma factor, reaA; and a negative regulator, reaB. The reaA and the reaB mutants expressed 4445 during growth and development at levels almost 100-fold higher than wild type, indicating that these genes encode negative regulators. The ecfA mutant expressed 4445-lacZ at basal levels, indicating that ecfA is a positive regulator. High Mg2+ concentrations over-stimulated this ecfA pathway possibly due to the depletion of exopolysaccharides and assembled type IV pili. These data indicate that the ecfA operon encodes a new regulatory stress pathway that integrates and transduces starvation and cell density cues during early development and is also responsive to cell-surface alterations.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify more mutations that can affect the early development of Myxococcus xanthus, the synthetic transposon TnT41 was designed and constructed. By virtue of its special features, it can greatly facilitate the processes of mutation screening/selection, mapping, cloning and DNA sequencing. In addition, it allows for the systematic discovery of genes in regulatory hierarchies using their target promoters. In this study, the minimal regulatory region of the early developmentally regulated gene 4521 was used as a reporter in the TnT41 mutagenesis. Both positive (P) mutations and negative (N) mutations were isolated based on their effects on 4521 expression.^ Four of these mutations, i.e. N1, N2, P52 and P54 were analyzed in detail. Mutations N1 and N2 are insertion mutations in a gene designated sasB. The sasB gene is also identified in this study by genetic and molecular analysis of five UV-generated 4521 suppressor mutations. The sasB gene encodes a protein without meaningful homology in the databases. The sasB gene negatively regulates 4521 expression possibly through the SasS-SasR two component system. A wild-type sasB gene is required for normal M. xanthus fruiting body formation and sporulation.^ Cloning and sequencing analysis of the P52 mutation led to the identification of an operon that encodes the M. xanthus high-affinity branched-chain amino acid transporter system. This liv operon consists of five genes designated livK, livH, livM, livC, and livF, respectively. The Liv proteins are highly similar to their counterparts from other bacteria in both amino acid sequences, functional motifs and predicted secondary structures. This system is required for development since liv null mutations cause abnormality in fruiting body formation and a 100-fold decrease in sporulation efficiency.^ Mutation P54 is a TnT41 insertion in the sscM gene of the ssc chemotaxis system, which has been independently identified by Dr. Shi's lab. The sscM gene encodes a MCP (methyl-accepting chemotaxis protein) homologue. The SscM protein is predicted to contain two transmembrane domains, a signaling domain and at least one putative methylation site. Null mutations of this gene abolish the aggregation of starving cells at a very early stage, though the sporulation levels of the mutant can reach 10% that of wild-type cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initiation of Myxococcus xanthus multicellular development requires both nutrient limitation and high cell density. The extracellular signal, A signal, which consists of a set of amino acids at specific concentrations, serves as a cell density signal in M. xanthus early development. A reporter gene, designated 4521, that requires both starvation and A signal for developmental expression was used to identify mutations in the signal transduction pathways. A group of point mutations located in the chromosomal sasB locus that bypasses both requirements was previously isolated. One of these point mutations, sasB7, was mapped to the sasS gene, which is predicted to encode a transmembrane histidine protein kinase required for normal development. SasS is a positive regulator of 4521 and a candidate A signal sensor. This dissertation continues the characterization of the sasB locus, focusing on the sasR gene and the functional relationship of SasS and SasR. ^ The sasR gene is located 2.2-kb downstream of sasS. It is predicted to encode an NtrC-like response regulator, which belongs to the family of sigma54 transcriptional activators. SasR is a positive regulator of 4521 gene and is required for normal development. The sasR mutant displays phenotypes similar to that of sasS mutant. Both SasS and SasR are required for the A-signal-dependent 4521 expression. Genetic epistasis analysis indicates that SasR functions downstream of SasS. Biochemical studies show that SasS has autokinase activity, and phosphorylated SasS is able to transfer its phosphate to SasR. We propose that SasS and SasR form a two-component signal transduction system in the A signal transduction pathway. ^ To search for the genes regulated by SasS and SasR, expression patterns of a group of developmental genes were compared in wild-type and sasS null mutant backgrounds. SasS and SasR were found to positively regulate sasN and 4521. The sasN gene was previously identified as a negative regulator of 4521, located at about 170-bp downstream of sasR. It is required for normal fruiting body development. Based on the above data, a regulatory network consisting of sasS, sasR, sasN, and 4521 is hypothesized, and the interactions of the components in this network can now be further studied. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gliding bacterium Myxococcus xanthus aggregates to form spore-filled fruiting bodies when starved at high density. All of the identified M. xanthus lipopolysaccharide (LPS) O-antigen biosynthesis mutants exhibit defective motility and fruiting-body development. To determine the cause of these phenotypes, the cell-surface properties of the LPS O-antigen mutants were compared to wild-type cells. The binding characteristics of wild-type and LPS O-antigen-defective strains to cationic resin indicate that the mutant cell surfaces are more electronegative. Antibiotic sensitivity and hexadecane adhesion assays indicate that the wild-type M. xanthus cell surface is hydrophobic, supporting the idea that phospholipids are present in the outer leaflet of the outer membrane. The absence of the LPS O-antigen appears to expose charges associated with phospholipids and LPS core/lipid A, resulting in a dramatic alteration of the cell-surface organization and charge. These differences may affect the interaction of the LPS O-antigen mutants with their substratum and neighboring cells, leading to defects in social and single-cell gliding motility and thus, deficiencies in fruiting body formation. ^ The LPS O-antigen biosynthetic mutations also bypass the requirement of 4521 gene expression for the cell-density signal, A signal. The 4521 gene is overexpressed in these mutants. This 4521 overexpression is dependent on the sensor kinase SasS. Co-development with wild-type cells, or the addition of crude polysaccharides or membrane vesicles restores the ability of LPS O-antigen mutants to form fruiting bodies and lowers 4521 developmental gene expression to wild-type levels. Wild-type vesicles may attach or incorporate into the outer membrane of the mutants that lack LPS O-antigen, restoring a wild-type periplasmic status and allowing for normal levels of 4521 activity and fruiting body formation. We propose that the LPS composition and the configuration of the outer membrane are important elements for the complex behavioral response of M. xanthus fruiting body development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social behaviors are often targets of natural selection among higher organisms, but quantifying the effects of such selection is difficult. We have used the bacterium Myxococcus xanthus as a model system for studying the evolution of social interactions. Changes in the social behaviors of 12 M. xanthus populations were quantified after 1,000 generations of evolution in a liquid habitat, in which interactions among individuals were continually hindered by shaking and low cell densities. Derived lineages were compared with their ancestors with respect to maximum growth rate, motility rates on hard and soft agar, fruiting body formation ability, and sporulation frequency during starvation. Improved performance in the liquid selective regime among evolved lines was usually associated with significant reductions in all of the major social behaviors of M. xanthus. Maintenance of functional social behaviors is apparently detrimental to fitness under asocial growth conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Filamentous bacterial cells often provide biological information that is not readily evident in normal-size cells. In this study, the effect of cellular filamentation on gliding motility of Myxococcus xanthus, a Gram-negative social bacterium, was investigated. Elongation of the cell body had different effects on adventurous and social motility of M. xanthus. The rate of A-motility was insensitive to cell-body elongation whereas the rate of S-motility was reduced dramatically as the cell body got longer, indicating that these two motility systems work in different ways. The study also showed that filamentous wild-type cells glide smoothly with relatively straight, long cell bodies. However, filamentous cells of certain social motility mutants showed zigzag, tangled cell bodies on a solid surface, apparently a result of a lack of coordination between different fragments within the filaments. Further genetic and biochemical analyses indicated that the uncoordinated movements of these mutant filaments were correlated with the absence of cell surface fibril materials, indicating a possible new function for fibrils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myxococcus xanthus is a Gram-negative bacterium that aggregates to form fruiting bodies when nutrients are limiting. Previous studies showed that the frz mutants that are defective in chemotaxis exhibited irregular and infrequent patterns of cellular reversal. In contrast, wild-type cells, when examined individually, reverse relatively frequently, about once every 6 min. It is not known how the change of reversal frequency effects cellular aggregation during fruiting body formation in M. xanthus. In this study, we stained cells with a tetrazolium dye so that we could track the reversal frequencies of single cells and cells in groups. We found that developmental cells in large groups reverse much less than cells in small groups or as single cells. This reduced cellular reversal frequency is related to the frz signal transduction system and correlated with the methylation of FrzCD (a methyl-accepting chemotaxis protein). Cells containing a mutation in the frz genes or in the genes required for social motility do not respond in this way. The reduction in cellular reversals as developmental cells accumulate in groups suggests a simple hypothesis for the aggregation of cells into discrete mounds during fruiting body formation. We also found that M. xanthus cells glide with equal frequency in the forward or reverse directions, indicating that cells do not contain a "head" or "tail."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C factor, an intercellular signaling protein, is required for aggregation and sporulation of the social bacterium, Myxococcus xanthus. We report that C factor, which normally is associated with the cell surface, provides input to the Frz signal transduction cascade. Elements of this cascade have sequence homology to bacterial chemotaxis systems and are known to control the frequency of gliding reversal. Exposure of developing cells of a C-factor-less mutant (csgA) to purified C factor increases the ratio of methylated to nonmethylated FrzCD protein, the Frz homolog of the methyl-accepting chemotaxis proteins. Methylation depends on the cognate methyltransferase FrzF, and its extent increases with the concentration of C factor. C-factor-induced methylation also depends on the product of a gene, called class II, which is necessary in vivo for all known responses to C factor. A model for aggregation is proposed in which C factor stimulates the Frz cascade and thereby decreases cell reversals in a way that preferentially leads cells into an aggregate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arthrospira (Spirulina) (Setchell& Gardner) is an important cyanobacterium not only in its nutritional potential but in its special biological characteristics. An unbiased fosmid library of Arthrospira maxima FACHB438 that contains 4300 clones was constructed. The size distribution of insert fragments is from 15.5 to 48.9 kb and the average size is 37.6 kb. The recombination frequency is 100%. Therefore the library is 29.9 equivalents to the Arthrospira genome size of 5.4 Mb. A total of 719 sample clones were randomly chosen from the library and 602 available sequences, which consisted of 307,547 bases, covering 5.70% of the whole genome. The codon usage of A. maxima was not strongly biased. GC content at the first position of codons (46.9%) was higher than the second (39.8%) and the third (45.5%) positions. GC content of the genome was 43.6%. Of these sequences, 287 (47.7%) showed high similarities to known genes, 63 (10.5%) to hypothetical genes and the remaining 252 (41.8%) had no significant similarities. The assigned genes were classified into 22 categories with respect to different biological roles. Remarkably, the high presence of 25 sequences (4.2%) encoding reverse transcriptase indicates the RT gene may have multiple copies in the A. maxima genome and might play an important role in the evolutionary history and metabolic regulation. In addition, the sequences encoding the ATP-binding cassette transport system and the two-component signal transduction system were the second and third most frequent genes, respectively. These genomic features provide some clues as to the mechanisms by which this organism adapts to the high concentration of bicarbonate and to the high pH environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce`s disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Myxobacteria are single-celled, but social, eubacterial predators. Upon starvation they build multicellular fruiting bodies using a developmental program that progressively changes the pattern of cell movement and the repertoire of genes expressed. Development terminates with spore differentiation and is coordinated by both diffusible and cell-bound signals. The growth and development of Myxococcus xanthus is regulated by the integration of multiple signals from outside the cells with physiological signals from within. A collection of M. xanthus cells behaves, in many respects, like a multicellular organism. For these reasons M. xanthus offers unparalleled access to a regulatory network that controls development and that organizes cell movement on surfaces. The genome of M. xanthus is large (9.14 Mb), considerably larger than the other sequenced delta-proteobacteria. We suggest that gene duplication and divergence were major contributors to genomic expansion from its progenitor. More than 1,500 duplications specific to the myxobacterial lineage were identified, representing >15% of the total genes. Genes were not duplicated at random; rather, genes for cell-cell signaling, small molecule sensing, and integrative transcription control were amplified selectively. Families of genes encoding the production of secondary metabolites are overrepresented in the genome but may have been received by horizontal gene transfer and are likely to be important for predation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complex prokaryote, Myxococcus xanthus, undergoes a program of multicellular development when starved for nutrients, culminating in sporulation. M. xanthus makes MglA, a 22-kDa, soluble protein that is required for both multicellular development and gliding motility. MglA is similar in sequence to the Saccharomyces cerevisiae SAR1 protein, a member of the Ras/Rab/Rho superfamily of small eukaryotic GTPases. The SAR1 gene, when integrated into the M. xanthus genome, complements the sporulation defect of a ΔmglA strain. A forward, second-site mutation on the M. xanthus chromosome, rpm, in combination with SAR1, restores fruiting body morphogenesis and gliding motility to a ΔmglA strain. The result that the rpm mutation suppresses the substitution of SAR1 for mglA suggests that Sar1p interacts with other M. xanthus proteins to control the motility-dependent aggregation of cells during development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type IV pili are thin filaments that extend from the poles of a diverse group of bacteria, enabling them to move at speeds of a few tenths of a micrometer per second. They are required for twitching motility, e.g., in Pseudomonas aeruginosa and Neisseria gonorrhoeae, and for social gliding motility in Myxococcus xanthus. Here we report direct observation of extension and retraction of type IV pili in P. aeruginosa. Cells without flagellar filaments were labeled with an amino-specific Cy3 fluorescent dye and were visualized on a quartz slide by total internal reflection microscopy. When pili were attached to a cell and their distal ends were free, they extended or retracted at rates of about 0.5 μm s−1 (29°C). They also flexed by Brownian motion, exhibiting a persistence length of about 5 μm. Frequently, the distal tip of a filament adsorbed to the substratum and the filament was pulled taut. From the absence of lateral deflections of such filaments, we estimate tensions of at least 10 pN. Occasionally, cell bodies came free and were pulled forward by pilus retraction. Thus, type IV pili are linear actuators that extend, attach at their distal tips, exert substantial force, and retract.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bacterium Myxococcus xanthus responds to blue light by producing carotenoids. It also responds to starvation conditions by developing fruiting bodies, where the cells differentiate into myxospores. Each response entails the transcriptional activation of a separate set of genes. However, a single gene, carD, is required for the activation of both light- and starvation-inducible genes. Gene carD has now been sequenced. Its predicted amino acid sequence includes four repeats of a DNA-binding domain present in mammalian high mobility group I(Y) proteins and other nuclear proteins from animals and plants. Other peptide stretches on CarD also resemble functional domains typical of eukaryotic transcription factors, including a very acidic region and a leucine zipper. High mobility group yI(Y) proteins are known to bind the minor groove of A+T-rich DNA. CarD binds in vitro an A+T-rich element that is required for the proper operation of a carD-dependent promoter in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Virulence of the opportunistic pathogen Pseudomonas aeruginosa involves the coordinate expression of a wide range of virulence factors including type IV pili which are required for colonization of host tissues and are associated with a form of surface translocation termed twitching motility. Twitching motility in P. aeruginosa is controlled by a complex signal transduction pathway which shares many modules in common with chemosensory systems controlling flagella rotation in bacteria and which is composed, in part, of the previously described proteins PilG, PilH, PilI, PilJ and PilK. Here we describe another three components of this pathway: ChpA, ChpB and ChpC, as well as two downstream genes, ChpD and ChpE, which may also be involved. The central component of the pathway, ChpA, possesses nine potential sites of phosphorylation: six histidine-containing phosphotransfer (HPt) domains, two novel serine- and threonine-containing phosphotransfer (SPt, TPt) domains and a CheY-like receiver domain at its C-terminus, and as such represents one of the most complex signalling proteins yet described in nature. We show that the Chp chemosensory system controls twitching motility and type IV pili biogenesis through control of pili assembly and/or retraction as well as expression of the pilin subunit gene pilA. The Chp system is also required for full virulence in a mouse model of acute pneumonia.