999 resultados para Myographic studies


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mortality caused by snakebites is more damaging than many tropical diseases, such as dengue haemorrhagic fever, cholera, leishmaniasis, schistosomiasis and Chagas disease. For this reason, snakebite envenoming adversely affects health services of tropical and subtropical countries and is recognized as a neglected disease by the World Health Organization. One of the main components of snake venoms is the Lys49-phospholipases A2, which is catalytically inactive but possesses other toxic and pharmacological activities. Preliminary studies with MjTX-I from Bothrops moojeni snake venom revealed intriguing new structural and functional characteristics compared to other bothropic Lys49-PLA2s. We present in this article a comprehensive study with MjTX-I using several techniques, including crystallography, small angle X-ray scattering, analytical size-exclusion chromatography, dynamic light scattering, myographic studies, bioinformatics and molecular phylogenetic analyses.Based in all these experiments we demonstrated that MjTX-I is probably a unique Lys49-PLA2, which may adopt different oligomeric forms depending on the physical-chemical environment. Furthermore, we showed that its myotoxic activity is dramatically low compared to other Lys49-PLA2s, probably due to the novel oligomeric conformations and important mutations in the C-terminal region of the protein. The phylogenetic analysis also showed that this toxin is clearly distinct from other bothropic Lys49-PLA2s, in conformity with the peculiar oligomeric characteristics of MjTX-I and possible emergence of new functionalities inresponse to environmental changes and adaptation to new preys. © 2013 Salvador et al.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lys49-phospholipases A2 (Lys49-PLA2s) are proteins found in bothropic snake venoms (Viperidae family) and belong to a class of proteins which presents a phospholipase A2 scaffold but are catalytically inactive. These proteins (also known as PLA2s-like toxins) exert a pronounced local myotoxic effect and are not neutralized by antivenom, being their study relevant in terms of medical and scientific interest. Despite of the several studies reported in the literature for this class of proteins only a partial consensus has been achieved concerning their functional-structural relationships. In this work, we present a comprehensive structural and functional study with the MjTX-II, a dimeric Lys49-PLA2 from Bothrops moojeni venom which includes: (i) high-resolution crystal structure; (ii) dynamic light scattering and bioinformatics studies in order to confirm its biological assembly; (iii) myographic and electrophysiological studies and, (iv) comparative studies with other Lys49-PLA2s. These comparative analyses let us to get important insights into the role of Lys122 amino acid, previously indicated as responsible for Lys49-PLA2s catalytic inactivity and added important elements to establish the correct biological assembly for this class of proteins. Furthermore, we show two unique sequential features of MjTX-II (an amino acid insertion and a mutation) in comparison to all bothropic Lys49-PLA2s that lead to a distinct way of ligand binding at the toxin's hydrophobic channel and also, allowed the presence of an additional ligand molecule in this region. These facts suggest a possible particular mode of binding for long-chain ligands that interacts with MjTX-II hydrophobic channel, a feature that may directly affect the design of structure-based ligands for Lys49-PLA2s. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this present work attempts have been made to study the glass transition temperature of alternative mould materials by using both microwave heating and conventional oven heating. In this present work three epoxy resins, namely R2512, R2515 and R2516, which are commonly used for making injection moulds have been used in combination with two hardeners H2403 and H2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. In order to distinguish the effects between the microwave and conventional heating, a number of experiments were performed to test their mechanical properties such as tensile and flexural strengths. Additionally, differential scanning calorimeter technique was implemented to measure the glass transition temperature on both microwave and conventional heating. This study provided necessary evidences to establish that microwave heated mould materials resulted with higher glass transition temperature than the conventional heating. Finally, attempts were also made to study the microstructure of microwave-cured materials by using a scanning electron microscope in order to analyze the morphology of cured specimens.