49 resultados para Myofibrils
Resumo:
Increased Kt concentration in seawater induces metamorphosis in the ascidian Herdmania momus. Larvae cultivated at 24 degrees C exhibit highest rates of metamorphosis when treated with 40 mM KCl-elevated seawater at 21 degrees C. At 24 degrees C, H. momus larvae develop competence to respond to KCl-seawater and initiate metamorphosis approximately 3 h after hatching. Larval trunks and tails separated from the anterior papillae region, but maintained in a common tunic at a distance of greater than 60 mu m, do not undergo metamorphosis when treated with KCl-seawater; normal muscle degradation does not occur in separated tails while ampullae develop from papillae-containing anterior fragments. Normal programmed degradation of myofibrils occurs when posterior fragments are fused to papillae-containing anterior fragments. These data indicate that H. momus settlement and metamorphosis only occurs when larvae have attained competence, and suggest that an anterior signalling centre is stimulated to release a factor that induces metamorphosis.
Resumo:
Objective: To determine the frequency of cardiac alterations in necropsies of AIDS patients in pre-HAART era and better understand the pathogenesis of HIV-related cardiomyopathy. Design: Retrospective study of 94 complete necropsies. Method: Macroscopic, histopathologic (histochemical,immunohistochemical and in situ hybridization techniques) and ultra structural myocardial evaluation (23 cases). Results: Cardiac alterations were observed in 94.4%; 74% showed variable degrees of cardiac dilation not related to known cardiovascular diseases. Eighty-two percent (81.8%) of patients with biventricular dilation showed diffuse-regressive alterations (thinning and waving cardiomyocytes with increase of lipofuscin pigment granules). Myocarditis was diagnosed in 27 cases (28.7%), 16 (59.3%) of known etiology. The ultra structural study has revealed cardiomyocytes alterations (mitochondriosis, loss of myofibrils, increase in the amount of perinuclear-lipofuscin pigment granules) associated to activation signals of capillary-endothelial cells (enhancement of pseudopodia and transcellular channels). Cardiomyocytes` apoptosis was demonstrated at structural level in 10 (43.5%) patients; tumor necrosis factor alpha (TNF alpha) was detected in 17/18 cases. Conclusions: This pioneer study described the association of histopathological and ultra structural findings (thinning and waving cardiomyocytes with increase of lipofuscin pigment granules, mitochondriosis and loss of myofibrils) with different degrees of cardiac-chamber dilation probably representing a spectrum of alterations that would lead to myocardial dysfunction and development of HIV-related cardiomyopathy. Cardiomyocytes` apoptosis observed at ultra structural level and demonstration of TNF alpha associated to described alterations suggest that this cytokine plays an important role in both negative-inotropic effect and capacity to induce apoptosis through death receptor-controlled pathway. (C) 2008 Published by Elsevier Ireland Ltd.
Resumo:
This study describes increased sarcolemmal permeability and myofilamentar damage that occur together with lipid peroxidation and protein nitration in the myocardium in severe sepsis induced by cecal ligation and puncture. Male C57BL/6 mice were submitted to moderate and severe septic injury and sham operation. Using light and laser confocal microscopy, diffuse foci of myocytolysis associated with focal disruption of the actin/myosin contractile apparatus could be seen in hearts with severe septic injury. The myocardial expressions of the sarcomeric proteins myosin and actin were downregulated by both severe and moderate injuries. The detection of albumin staining in the cytoplasm of myocytes to evaluate sarcolemmal permeability provided evidence of severe and mild injury of the plasma membrane in hearts with severe and moderate septic injury, respectively. The administration of a superoxide scavenger caused marked reduction of sarcolemmal permeability, indicating the involvement of free radicals in its genesis. On electron microscopy, these changes were seen to correspond to spread blocks of a few myocytes with fragmentation and dissolution of myofibrils, intracellular edema, and, occasionally, rupture of the sarcolemma. In addition, oxidative damage to lipids, using anti-4-hydroxynonenal, an indicator of oxidative stress and disruption of plasma membrane lipids, and to proteins, using antinitrotyrosine, a stable biomarker of peroxynitrite-mediated protein nitration, was demonstrated. These findings make plausible the hypothesis that increased sarcolemmal permeability might be a primary event in myocardial injury in severe sepsis possibly due to oxidative damage to lipids and proteins that could precede phenotypic changes that characterize a septic cardiomyopathy.
Resumo:
The nerve terminals of intrinsic muscular fibers of the tongue of adult wistar rats was studied by using silver impregnation techniques, transmission electron microscopy (TEM), and high resolution scanning electron microscopy (HRSEM) to observe the nerve fibers and their terminals. Silver impregnation was done according to Winkelman and Schmit, 1957. For TEM, small blocks were fixed in modified Karnovsky solution, postfixed in 1% buffered osmium tetroxide solution, and embedded in Spurr resin. For HRSEM, the parts were fixed in 2% osmium tetroxide solution with 1/15 M sodium phosphate buffer (pH 7.4) at 4 degrees C for 2 h, according to the technique described by Tanaka, 1989. Thick myelinated nerve bundles were histologically observed among the muscular fibers. The intrafusal nerve fiber presented a tortuous pathway with punctiform terminal axons in clusters contacting the surface of sarcolemma. Several myelinated nerve fibers involved by collagen fibers of the endoneurium were observed in HRSEM in three-dimensional aspects. The concentric lamellae of the myelin sheath and the axoplasm containing neurofilaments interspersed among the mitochondria were also noted. In TEM, myofibrils, mitochondria, rough endoplasmic reticulum, Golgi`s apparatus, and glycogen granules were observed in sarcoplasm. It is also noted that the sarcomeres constituted by myofilaments with their A, I, and H bands and the electron dense Z lines. In areas adjacent to muscular fibers, there were myelinated and unmyelinated nerve fibers involved by endoneurium and perineurium. In the region of the neuromuscular junction, the contact with the sarcolemma of the muscular cell occurs forming several terminal buttons and showing numerous evaginations of the cell membrane. In the terminal button, mitochondria and numerous synaptic vesicles were observed. Microsc. Res. Tech. 72:464-470, 2009. (C) 2009 Wiley-Liss. Inc.
Resumo:
Calponins are proteins present in vertebrate smooth musculature where they occur in association with thin myofilaments. Calponins are not present in vertebrate or invertebrate striated muscles. The blood fluke Schistosoma japonicum expresses a 38.3-kDa protein that bears substantial homology with vertebrate calponin and occurs entirely within smooth musculature of adults. Calponin-like immunoreactivity has been demonstrated in smooth muscles of many invertebrate phyla. The Schistosoma japonicum calponin has been localised in smooth myofibrils of adults where it is associated with myofilaments and sarcoplasmic reticulum. In this study, the ultrastructural localisation of the protein in muscles of S. japonicum cercariae is described. The protein is present in smooth muscles of the forebody and the stratified muscle of the tail. Within the stratified layer, the protein occurs predominantly in transverse arrays of sarcoplasmic reticulum. The localisation data suggest that the calponin-like protein of S. japonicum is involved in contraction of the stratified tail muscle. Furthermore, the presence of a calponin system in the stratified muscle suggests that this muscle is simply a superior form of muscle, closely related to smooth muscles that use a caldesmin-calponin system in contraction. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
We investigated the effects of gamma-radiation on cells isolated from the longitudinal smooth muscle layer of the guinea pig ileum, a relatively radioresistant tissue. Single doses (up to 50 Gy) reduced the amount of sarcoplasmatic reticulum and condensed the myofibrils, as shown by electron microscopy 3 days post-irradiation. After that, contractility of smooth muscle strips was reduced. Ca(2+) handling was altered after irradiation, as shown in fura-2 loaded cells, with elevated basal intracellular Ca(2+), reduced amount of intrareticular Ca(2+), and reduced capacitive Ca(2+) entry. Radiation also induced apoptosis, judged from flow cytometry of cells loaded with proprium iodide. Electron microscopy showed that radiation caused condensation of chromatin in dense masses around the nuclear envelope, the presence of apoptotic bodies, fragmentation of the nucleus, detachment of cells from their neighbors, and reductions in cell volume. Radiation also caused activation of caspase 12. Apoptosis was reduced by the administration of the caspase inhibitor Z-Val-Ala-Asp-fluoromethyl-ketone methyl ester (Z-VAD-FIVIK) during the 3 day period after irradiation, and by the chelator of intracellular Ca(2+), 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetraacetic acid (BAPTA), from 1 h before until 2 h after irradiation. BAPTA also reduced the effects of radiation on contractility, basal intracellular Ca(2+), amount of intrareticular Ca(2+), capacitative Ca(2+) entry, and apoptosis. In conclusion, the effects of gamma radiation on contractility, Ca(2+) handling, and apoptosis appear due to a toxic action of intracellular Ca(2+). Ca(2+)-induced damage to the sarcoplasmatic reticulum seems a key event in impaired Ca(2+) handling and apoptosis induced by gamma-radiation. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
When smooth muscle cells are enzyme-dispersed from tissues they lose their original filament architecture and extracellular matrix surrounds. They then reorganize their structural proteins to accommodate a 2-D growth environment when seeded onto culture dishes. The aim of the present study was to determine the expression and reorganization of the structural proteins in rabbit aortic smooth muscle cells seeded into 3-D collagen gel and Matrigel (a basement membrane matrix). It was shown that smooth muscle cells seeded in both gels gradually reorganize their structural proteins into an architecture similar to that of their in vivo counterparts. At the same time, a gradual decrease in levels of smooth muscle-specific contractile proteins (mainly smooth muscle myosin heavy chain-2) and an increase in p-nonmuscle actin occur, independent of both cell growth and extracellular matrix components. Thus, smooth muscle cells in 3-D extracellular matrix culture and in vivo have a similar filament architecture in which the contractile proteins such as actin, myosin, and alpha -actinin are organized into longitudinally arranged myofibrils and the vimentin-containing intermediate filaments form a meshed cytoskeletal network, However, the myofibrils reorganized in vitro contain less smooth muscle-specific and more nonmuscle contractile proteins. (C) 2001 Academic Press.
Resumo:
The objective of this review is to summarize developments in the use of quantitative affinity chromatography to determine equilibrium constants for solute interactions of biological interest. Affinity chromatography is an extremely versatile method for characterizing interactions between dissimilar reactants because the biospecificity incorporated into the design of the affinity matrix ensures applicability of the method regardless of the relative sizes of the two reacting solutes. Adoption of different experimental strategies, such as column chromatography, simple partition equilibrium experiments, solid-phase immunoassay, and biosensor technology, has led to a situation whereby affinity chromatography affords a means of characterizing interactions governed by an extremely broad range of binding affinities-relatively weak interactions (binding constants below 10(3) M-1) through to interactions with binding constants in excess of 10(9) M-1. In addition to its important role in solute separation and purification, affinity chromatography thus also possesses considerable potential for investigating the functional roles of the reactants thereby purified. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Contraction forces developed by cardiomyocytes are transmitted across the plasma membrane through end-to-end connections between the myocytes, called intercalated disks, which enable the coordinated contraction of heart muscle. A component of the intercalated disk, the adherens junction, consists of the cell adhesion molecule, N-cadherin. Embryos lacking N-cadherin die at mid-gestation from cardiovascular abnormalities. We have evaluated the role of N-cadherin in cardiomyogenesis using N-cadherin-null mouse embryonic stem (ES) cells grown as embryoid bodies (EBs) in vitro. Myofibrillogenesis, the spatial orientation of myofibers, and intercellular contacts including desmosomes were normal in N-cadherin-null ES cell-derived cardiomyocytes. The effect of retinoic acid (RA), a stage and dose-dependent cardiogenic factor, was assessed in differentiating ES cells. all-trans (at) RA increased the number of ES cell-derived cardiomyocytes by approximately 3-fold (at 3 x 10(-9) M) in wt EBs. However, this effect was lost in N-cadherin-null EBs. In the presence of supplemented at-RA, the emergence of spontaneously beating cardiomyocytes appeared to be delayed and slightly less efficient in N-cadherin-null compared with wt and heterozygous EBs (frequencies of EBs with beating activity at 5 days: 54+/-18% vs. 96+/-0.5%, and 93+/-7%, respectively; peak frequencies of EBs with beating activity: 83+/-8% vs. 96+/-0.5% and 100%, respectively). In conclusion, cardiomyoyctes differentiating from N-cadherin-null ES cells in vitro show normal myofibrillogenesis and intercellular contacts, but impaired responses to early cardiogenic effects mediated by at-RA. These results suggest that N-cadherin may be essential for RA-induced cardiomyogenesis in mouse ES cells in vitro.
Resumo:
BACKGROUND: Tropomyosin (TM), an essential actin-binding protein, is central to the control of calcium-regulated striated muscle contraction. Although TPM1alpha (also called alpha-TM) is the predominant TM isoform in human hearts, the precise TM isoform composition remains unclear. METHODS AND RESULTS: In this study, we quantified for the first time the levels of striated muscle TM isoforms in human heart, including a novel isoform called TPM1kappa. By developing a TPM1kappa-specific antibody, we found that the TPM1kappa protein is expressed and incorporated into organized myofibrils in hearts and that its level is increased in human dilated cardiomyopathy and heart failure. To investigate the role of TPM1kappa in sarcomeric function, we generated transgenic mice overexpressing cardiac-specific TPM1kappa. Incorporation of increased levels of TPM1kappa protein in myofilaments leads to dilated cardiomyopathy. Physiological alterations include decreased fractional shortening, systolic and diastolic dysfunction, and decreased myofilament calcium sensitivity with no change in maximum developed tension. Additional biophysical studies demonstrate less structural stability and weaker actin-binding affinity of TPM1kappa compared with TPM1alpha. CONCLUSIONS: This functional analysis of TPM1kappa provides a possible mechanism for the consequences of the TM isoform switch observed in dilated cardiomyopathy and heart failure patients.
Resumo:
Abstract: Amorimia exotropica is an important plant associated with sudden death in cattle in Southern Brazil. In order to understand the mechanisms by which A. exotropica causes acute lesions in the heart and kidney of intoxicated animals, an experiment was conducted to determine the histopathology and ultrastructure of myocardial and renal lesions of intoxicated rabbits. After receiving 18g/kg of dried plant, six rabbits died suddenly. At necropsy, the liver was swollen and no other macroscopic lesions were observed. Histologically, centrolobular and midzonal hepatocytes were vacuolated. These vacuoles were strong PAS stained positive, suggesting that they corresponded to glycogen accumulations. In some regions of the ventricular septum and ventricles were found vacuoles of different sizes and the kidneys of two rabbits showed vacuolar degeneration on distal convoluted tubules. Ultrastructurally, the myocardium had cardiomyocytes swelling with separation of myofibrils bundles and rupture and disorganization of the sarcomeres. The mitochondria displayed swelling, disorganization, disruption of the mitochondrial cristae, and electron-dense matrix. Some mitochondria exhibited eccentric projections of their membranes with disruption of both outer and inner membranes. The sarcoplasmic reticulum had no alterations, whereas the T-tubule system was occasionally dilated and ruptured. The kidneys had mitochondrial swelling with disorganization and disruption of the mitochondrial cristae. The vacuoles result from the swelling of the endoplasmatic reticulum and usually were located between two basolateral infoldings and mitochondria, occurring preferentially around the nucleus. The myocytes and T system damages induced by A. exotropica result in acute heart failure and death. Furthermore, this mechanism of cardiotoxicity may be common to all plant containing monofluoroacetate.
Resumo:
Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, ²H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg-1·day-1 compared to 0.8 g·kg-1·day-1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h.
Resumo:
The effects of high pressure (to 800 MPa) applied at different temperatures (20-70 degreesC) for 20 min on beef post-rigor longissimus dorsi texture were studied. Texture profile analysis showed that when heated at ambient pressure there was the expected increase in hardness with increasing temperature and when pressure was applied at room temperature there was again the expected increase in hardness with increasing pressure. Similar results to those found at ambient temperature were found when pressure was applied at 40 degreesC. However, at higher temperatures, 60 and 70 degreesC it was found that pressures of 200 MPa caused large and significant decreases in hardness. The results found for hardness were mirrored by those for gumminess and chewiness. To further understand the changes in texture observed, intact beef longissimus dorsi samples and extracted myofibrils were both subjected to differential scanning calorimetry after being subjected to the same pressure/temperature regimes. As expected collagen was reasonably inert to pressure and only at temperatures of 60-70 degreesC was it denatured/unfolded. However, myosin was relatively easily unfolded by both pressure and temperature and when pressure denatured a new and modified structure was formed of low thermal stability. Although this new structure had low thermal stability at ambient pressure it still formed in both the meat and myofibrils when pressure was applied at 60 degreesC. It seems unlikely that structurally induced changes can be a major cause of the significant loss of hardness observed when beef is treated at high temperature (60-70 degreesC) and 200 MPa and it is suggested that accelerated proteolysis under these conditions is the major cause. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Hypertrophy of myocytes in the heart ventricles is an important adaptation that in vivo occurs in response to a requirement for increased contractile power. It involves changes at the level of gene transcription, stimulation of the rate of protein synthesis (translation), and increased assembly of myofibrils. There is mounting evidence of the involvement of reversible protein phosphorylation and dephosphorylation in most of these processes. Protein kinase C, mitogen-activated protein kinases, and transcription factors have been implicated in the modulation of the transcriptional changes. Activation of translation may also be mediated through protein phosphorylation/dephosphorylation, although this has not been clearly established in the heart. Here we provide a critical overview of the signalling pathways involved in the hypertrophic response and provide a scheme to account for many of its features.
Resumo:
Low level laser therapy (LLLT) is known for its positive results but studies on the biological and biomodulator characteristics of the effects produced in the skeletal muscle are Still lacking. In this Study the effects of two laser dosages, 5 or 10 J/cm(2), on the lesioned tibial muscle were compared. Gerbils previously lesioned by 100 g load impact were divided into three groups: GI (n = 5) controls, lesion non-irradiated; GII (n = 5), lesion irradiated with 5 J/Cm(2) and GIII (n = 5), lesion irradiated with 10 J/cm(2), and treated for 7 consecutive days with a laser He-Ne (lambda = 633 rim). After intracardiac perfusion, the muscles were dissected and reduced to small fragments, post-fixed in 1% osmium tetroxide, dehydrated in increasing alcohol concentrations, treated with propylene oxide and embedded in Spurr resin at 60 degrees C. Ultrafine Cuts examined on a transmission electron microscope (Jeol 1010) revealed in the control GI group a large number of altered Muscle fibers with degenerating mitochondria, intercellular substance containing degenerating cell fragments and budding blood capillaries with Underdeveloped endothelial cells. However, groups GII and GIII showed muscle fibers with few altered myofibrils, regularly contoured mitochondria, ample intermembrane spaces and dilated mitochondrial crests. The clean intercellular Substance showed numerous collagen fibers and capillaries with multiple abluminal processes, intraluminal protrusions and several pinocytic vesicles in endothelial cells. it was concluded that laser dosages of 5 or 10 J/cm(2) delivered by laser He-Ne (lambda = 633 rim) during 7 consecutive days increase mitochondrial activity in muscular fibers, activate fibroblasts and macrophages and stimulate angiogenesis, thus suggesting effectivity of laser therapy tinder these experimental conditions. (C) 2009 Elsevier Ltd. All rights reserved.