40 resultados para Myoepithelial
Resumo:
The microenvironment plays a key role in the cellular differentiation of the two main cell lineages of the human breast, luminal epithelial, and myoepithelial. It is not clear, however, how the components of the microenvironment control the development of these cell lineages. To investigate how lineage development is regulated by 3-D culture and microenvironment components, we used the PMC42-LA human breast carcinoma cell line, which possesses stem cell characteristics. When cultured on a two-dimensional glass substrate, PMC42-LA cells formed a monolayer and expressed predominantly luminal epithelial markers, including cytokeratins 8, 18, and 19; E-cadherin; and sialomucin. The key myoepithelial-specific proteins α-smooth muscle actin and cytokeratin 14 were not expressed. When cultured within Engelbreth-Holm- Swarm sarcoma-derived basement membrane matrix (EHS matrix), PMC42-LA cells formed organoids in which the expression of luminal markers was reduced and the expression of other myoepithelial-specific markers (cytokeratin 17 and P-cadherin) was promoted. The presence of primary human mammary gland fibroblasts within the EHS matrix induced expression of the key myoepithelial-specific markers, α-smooth muscle actin and cytokeratin 14. Immortalized human skin fibroblasts were less effective in inducing expression of these key myoepithelial-specific markers. Confocal dual-labeling showed that individual cells expressed luminal or myoepithelial proteins, but not both. Conditioned medium from the mammary fibroblasts was equally effective in inducing myoepithelial marker expression. The results indicate that the myoepithelial lineage is promoted by the extracellular matrix, in conjunction with products secreted by breast-specific fibroblasts. Our results demonstrate a key role for the breast microenvironment in the regulation of breast lineage development.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
CD10 is a cell surface peptidase expressed in a wide variety of normal and neoplastic tissues, including breast myoepithelial cells. In salivary glands, expression of CD10 has only been used to identify neoplastic myoepithelial cells of pleomorphic adenomas and myoepithelial carcinomas. However, its accuracy in other salivary tumors with myoepithelial component has yet to be analyzed. We examined 72 salivary tumors with myoepithelial differentiation using immunohistochemical technique to detect CD10. In salivary glands, CD10 expression was not detected in myoepithelial cells. Only fibrocytes within the intralobular stroma were CD10 positive. In neoplastic myoepithelial cells, CD10 expression was found in 25.71% of benign and 32.43% of malignant neoplasms. When the different groups of tumors were compared, epithelial-myoepithelial carcinomas (EMEC) showed a stark contrast with the others (83.3% of cases with CD10 expression). Surprisingly, adenoid cystic carcinomas and basal cell adenomas were negative in 100% of the cases. Myoepitheliomas, pleomorphic adenomas, and myoepithelial carcinomas were positive in 27.7%, 30.0%, and 40% of the cases, respectively. In conclusion, salivary neoplastic myoepithelial cells gain CD10 expression in relation to their normal counterparts. However, the gain of this protein is not a sensitive marker for detecting myoepithelial cells in the majority of the tumors, except for EMEC. The high expression of CD10 by this carcinoma can be a valuable tool to separate EMEC from the tubular variant of adenoid cystic carcinomas in small incisional biopsies, where the precise diagnosis may be impossible.
Resumo:
In order to investigate the role of myoepithelial cell and tumor microenvironment in salivary gland neoplasma, we have performed a study towards the effect of different extracellular matrix proteins (basement membrane matrix, type I collagen and fibronectin) on morphology and differentiation of benign myoepithelial cells from pleomorphic adenoma cultured with malignant cell culture medium from squamous cell carcinoma. We have also analyzed the expression of alpha-smooth muscle actin (alpha-SMA) and FGF-2 by immunofluorescence and qPCR. Our immunofluorescence results, supported by qPCR analysis, demonstrated that alpha-SMA and FGF-2 were upregulated in the benign myoepithelial cells from pleomorphic adenoma in all studied conditions on fibronectin substratum. However, the myoepithelial cells on fibronectin substratum did not alter their morphology under malignant conditioned medium stimulation and exhibited a stellate morphology and, occasionally focal adhesions with the substratum. In summary, our data demonstrated that the extracellular matrix exerts an important role in the morphology of the benign myoepithelial cells by the presence of focal adhesions and also inducing increase FGF-2 and alpha-SMA expression by these cells, especially in the fibronectin substratum. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In veterinary medicine, the ability to classify mammary tumours based on the molecular profile and also determine whether the immunophenotype of the regional lymph node and/or systemic metastases is equal to that of the primary tumor may be predictive on the estimation of the effectiveness of various cancer treatments that can be scheduled. Therefore, aims, developed as projects, of the past three years have been (1) to define the molecular phenotype of feline mammary carcinomas and their lymph node metastases according to a previous modified algorithm and to demonstrate the concordance or discordance of the molecular profile between the primary tumour and lymph node metastasis, (2) to analyze, in female dogs, the relationship between the primary mammary tumor and its lymph node metastasis based on immunohistochemical molecular characterization in order to develop the most specific prognostic-predictive models and targeted therapeutic options, and (3) to evaluate the molecular trend of cancer from its primary location to systemic metastases in three cats and two dogs with mammary tumors. The studies on mammary tumours, particularly in dogs, have drawn gradually increasing attention not exclusively to the epithelial component, but also to the myoepithelial cells. The lack of complete information on a valid panel of markers for the identification of these cells in the normal and neoplastic mammary gland and lack of investigation of immunohistochemical changes from an epithelial to a mesenchymal phenotype, was the aim of a parallel research. While investigating mammary tumours, it was noticed that only few studies had focused on the expression of CD117. Therefore, it was decided to further deepen the knowledge in order to characterize the immunohistochemical staining of CD117 in normal and neoplastic mammary tissue of the dog, and to correlate CD117 immunohistochemical results with mammary histotype, histological stage (invasiveness), Ki67 index and patient survival time.
Resumo:
A differentiation towards myoepithelial cells has been demonstrated in several types of lesions in the breast. These include multifocal myoepitheliomatosis, the rare mixed tumor or pleomorphic adenoma, adenoid cystic carcinoma, adenomyoepithelioma and myoepithelial carcinoma (malignant myoepithelioma). Myoepithelial carcinoma is the only lesion purely composed of myoepithelial cells. All these tumors are benign and/or of low-grade malignancy, with the exception of malignant myoepithelioma. In contrast to the statement of the current World Health Organization (WHO), recent studies have reported that regional and distant metastases may occur in about 50% of pure myoepithelial carcinomas. The presented case of a breast carcinoma with dominant myoepithelial/spindle cell differentiation in a 58-year-old woman is an excellent example to document the highly aggressive biological behavior of this tumor phenotype. Despite an extensive chemotherapy and radiotherapy, the tumor was rapidly progressive, forming a finally exulcerating local tumor relapse and widespread metastases to the myocardium, lungs, liver, kidneys and skin. Similarities in morphology and biological behavior compared to patients with "triple-negative" (hormone receptor and Her2) monophasic sarcomatoid carcinomas and pure spindle cell sarcomas are discussed.
Resumo:
A serpin was identified in normal mammary gland by differential cDNA sequencing. In situ hybridization has detected this serpin exclusively in the myoepithelial cells on the normal and noninvasive mammary epithelial side of the basement membrane and thus was named myoepithelium-derived serine proteinase inhibitor (MEPI). No MEPI expression was detected in the malignant breast carcinomas. MEPI encodes a 405-aa precursor, including an 18-residue secretion signal with a calculated molecular mass of 46 kDa. The predicted sequence of the new protein shares 33% sequence identity and 58% sequence similarity to plasminogen activator inhibitor (PAI)-1 and PAI-2. To determine whether MEPI can modulate the in vivo growth and progression of human breast cancers, we transfected a full-length MEPI cDNA into human breast cancer cells and studied the orthotopic growth of MEPI-transfected vs. control clones in the mammary fat pad of athymic nude mice. Overexpression of MEPI inhibited the invasion of the cells in the in vitro invasion assay. When injected orthotopically into nude mice, the primary tumor volumes, axillary lymph node metastasis, and lung metastasis were significantly inhibited in MEPI-transfected clones as compared with controls. The expression of MEPI in myoepithelial cells may prevent breast cancer malignant progression leading to metastasis.
Resumo:
Normal human luminal and myoepithelial breast cells separately purified from a set of 10 reduction mammoplasties by using a double antibody magnetic affinity cell sorting and Dynabead immunomagnetic technique were used in two-dimensional gel proteome studies. A total of 43,302 proteins were detected across the 20 samples, and a master image for each cell type comprising a total of 1,738 unique proteins was derived. Differential analysis identified 170 proteins that were elevated 2-fold or more between the two breast cell types, and 51 of these were annotated by tandem mass spectrometry. Muscle-specific enzyme isoforms and contractile intermediate filaments including tropomyosin and smooth muscle (SM22) alpha protein were detected in the myoepithelial cells, and a large number of cytokeratin subclasses and isoforms characteristic of luminal cells were detected in this cell type. A further 134 nondifferentially regulated proteins were also annotated from the two breast cell types, making this the most extensive study to date of the protein expression map of the normal human breast and the basis for future studies of purified breast cancer cells.
Resumo:
Aims: To analyse the expression of proteins involved in DNA double strand break detection and repair in the luminal and myoepithelial compartments of benign breast lesions and malignant breast tumours with myoepithelial differentiation. Methods: Expression of the ataxia telangiectasia (ATM) and p53 proteins was immunohistochemically evaluated in 18 benign and malignant myoepithelial tumours of the breast. Fifteen benign breast lesions with prominent myoepithelial compartment were also evaluated for these proteins, in addition to those in the MRE11-Rad50-NBS1 (MRN) complex, and the expression profiles were compared with those seen in eight independent non-cancer (normal breast) samples and in the surrounding normal tissues of the benign and malignant tumours examined. Results: ATM expression was higher in the myoepithelial compartment of three of 15 benign breast lesions and lower in the luminal compartment of eight of these lesions compared with that found in the corresponding normal tissue compartments. Malignant myoepithelial tumours overexpressed ATM in one of 18 cases. p53 was consistently negative in benign lesions and was overexpressed in eight of 18 malignant tumours. In benign breast lesions, expression of the MRN complex was significantly more reduced in myoepithelial cells (up to 73%) than in luminal cells (up to 40%) (p = 0.0005). Conclusions: Malignant myoepithelial tumours rarely overexpress ATM but are frequently positive for p53. In benign breast lesions, expression of the MRN complex was more frequently reduced in the myoepithelial than in the luminal epithelial compartment, suggesting different DNA repair capabilities in these two cell types.
Resumo:
Medullary breast cancer (MBC) is a rare, diagnostically difficult, pathological subtype. Despite being high grade, it has a good prognosis. MBC patients have an excess of BRCA1 germ-fine mutation and reliable identification of MBC could help to identify patients at risk of carrying germline BRCA1 mutations or in whom chemotherapy could be avoided. The aim of this study was therefore to improve diagnosis by establishing an MBC protein expression profile using immunohistochemistry (IHC) on tissue-microarrays (TMA). Using a series of 779 breast carcinomas ('EC' set), diagnosed initially as MBC, a double-reading session was carried out by several pathologists on all of the histological material to establish the diagnosis as firmly as possible using a 'medullary score'. Only MBCs with high scores, i.e. typical MBC (TMBC) (n = 44) and non-TMBC grade III with no or low scores (n = 160), were included in the IHC study. To validate the results obtained on this first set, a control series of TMBC (n = 17) and non-MBC grade III cases (n = 140) ('IPC' set) was studied. The expression of 18 proteins was studied in the 61 TMBCs and 300 grade III cases from the two sets. The global intra-observer concordance of the first reading for the diagnosis of TMBC was 94%, with almost perfect kappa (kappa) of 0.815. TMBC was characterized by a high degree of basal/myoepithelial differentiation. In multivariate analysis with logistic regression, TMBC was defined by the association of P-cadherin (R = 2.29), MIB1 > 50 (R = 3.80), ERBB2 negativity (R = 2.24) and p53 positivity (RR = 1.45). Copyright (c) 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
Until recently the myoepithelial cell has been studied relatively little in terms of its role in breast cancer. A number of malignancies showing myoepithelial differentiation have been reported in the literature, although they are still thought to be relatively rare and only limited studies are published. As a result of recent expression profiling experiments, one type of tumor with myoepithelial features, the so-called 'basal' breast cancer, has received a renewed interest, although it has been known to pathologists for more than two decades. These tumors, which express markers of both luminal and myoepithelial cells, are now being studied using antibodies against some new molecules that have emerged from studies of sorted normal luminal and myoepithelial cells. These immunohistochemical data, combined with genomic studies, may lead to better identification and management of patients with 'basal' tumors.
Resumo:
Background: Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. Methodology: Single cell suspensions derived from human breast `organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres) were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. Principal Findings: We show that primary mammospheres contain a distinct side-population (SP) that displays a CD24(low)/CD44(low) phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high)/CD24(low) cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1) mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. Conclusions: Thus, the self-renewal potential of human breast stem cells is exhausted within five in vitro passages of mammospheres, suggesting the need for further improvisation in culture conditions for their long-term maintenance.
Resumo:
PURPOSE: There is growing evidence that interaction between stromal and tumor cells is pivotal in breast cancer progression and response to therapy. Based on earlier research suggesting that during breast cancer progression, striking changes occur in CD10(+) stromal cells, we aimed to better characterize this cell population and its clinical relevance. EXPERIMENTAL DESIGN: We developed a CD10(+) stroma gene expression signature (using HG U133 Plus 2.0) on the basis of the comparison of CD10 cells isolated from tumoral (n = 28) and normal (n = 3) breast tissue. We further characterized the CD10(+) cells by coculture experiments of representative breast cancer cell lines with the different CD10(+) stromal cell types (fibroblasts, myoepithelial, and mesenchymal stem cells). We then evaluated its clinical relevance in terms of in situ to invasive progression, invasive breast cancer prognosis, and prediction of efficacy of chemotherapy using publicly available data sets. RESULTS: This 12-gene CD10(+) stroma signature includes, among others, genes involved in matrix remodeling (MMP11, MMP13, and COL10A1) and genes related to osteoblast differentiation (periostin). The coculture experiments showed that all 3 CD10(+) cell types contribute to the CD10(+) stroma signature, although mesenchymal stem cells have the highest CD10(+) stroma signature score. Of interest, this signature showed an important role in differentiating in situ from invasive breast cancer, in prognosis of the HER2(+) subpopulation of breast cancer only, and potentially in nonresponse to chemotherapy for those patients. CONCLUSIONS: Our results highlight the importance of CD10(+) cells in breast cancer prognosis and efficacy of chemotherapy, particularly within the HER2(+) breast cancer disease.
Resumo:
Oral health complications in diabetes include decreased salivary secretion. The SLC5A1 gene encodes the Na(+)-glucose cotransporter SGLT1 protein, which not only transports glucose, but also acts as a water channel. Since SLC5A1 expression is altered in kidneys of diabetic subjects, we hypothesize that it could also be altered in salivary glands, contributing to diabetic dysfunction. The present study shows a diabetes-induced decrease (p < 0.001) in salivary secretion, which was accompanied by enhanced (p < 0.05) SGLT1 mRNA expression in parotid (50%) and submandibular (30%) glands. Immunohistochemical analysis of parotid gland of diabetic rats revealed that SGLT1 protein expression increased in the luminal membrane of ductal cells, which can stimulate water reabsorption from primary saliva. Furthermore, SGLT1 protein was reduced in myoepithelial cells of the parotid from diabetic animals, and that, by reducing cellular contractile activity, might also be related to reduced salivary flux. Six-day insulin-treated diabetic rats reversed all alterations. In conclusion, diabetes increases SLC5A1 gene expression in salivary glands, increasing the SGLT1 protein content in the luminal membrane of ductal cells, which, by increasing water reabsorption, might explain the diabetes-induced decrease in salivary secretion.