1000 resultados para Mutant Rats
Resumo:
Channel activating proteases (CAP) are membrane-bound serine proteases that have been identified as in vitro activators of the epithelial sodium channel (ENaC). Two of them are mainly studied in the laboratory. CAP1/Prss8 was previously shown implicated in colonic sodium homeostasis in vivo. In the first part of this thesis, we generated and characterized mice deficient for CAP2/Tmprss4. The mice are healthy and viable, and they do not show any obvious phenotype. We investigated ENaC activity and expression under regular and sodium- deficient diet, and we could demonstrate that CAP2 is not a major regulator of sodium homeostasis in vivo. We next studied whether CAP2 is implicated in potassium homeostasis. We detected a strong gender-dependency when CAP2 knock-out mice were put under a potassium-deficient diet. We showed in male mice an implication of CAP2 in the regulation of the colonic H+, K+- ATPase, and we propose an implication of membrane-associated progesterone receptors and their binding partners, as well as a possible cleavage-mediated glucocorticoid receptor signalling. We studied the possible interaction between CAPI and CAP2 by generating and characterizing two different mouse study groups, displaying different hypomorphic mutations in the CAPI gene, and deficient for CAP2. We demonstrate that balanced expression of CAPI and CAP2 is required for maintainance of skin integrity and for normal placental development. As CAPI knock-out embryos die due to a placental failure, the additional combined deletion of CAP2 resulted in survival until birth. We could evidence that CAPI and CAP2 are implicated in the same signalling pathway as proposed in cancer studies at the level of the placenta, implicating integrin a5, ERK, AKT, E- and N-cadherin. Furthermore, we investigated whether CAPI is implicated in the pathogenesis and susceptibility to experimental chronic colitis in a mutant rat model. By giving CAPI mutant rats Dextran sodium sulfate, we induced chronic inflammation of the colon, and we highlighted the protective role of CAPI at the histopathological and clinical levels. In conclusion, we showed that CAP2 is not a major regulator of ENaC-mediated sodium homeostasis in vivo, but rather a regulator of potassium homeostasis in a gender-dependent manner implicating the colonic H+, K+-ATPase, membrane progesterone receptors, and the glucocorticoid receptor. We have investigated whether CAPI and CAP2 interact at the functional level, and we show that a balanced expression of CAPI and CAP2 is required in the skin, but also in the placenta. Imbalanced expression of CAPI and CAP2 leads to impaired EMT-associated signalling. We have studied whether CAPI is implicated in the pathogenesis and susceptibility to chronic colitis, and we demonstrated the protective role of CAPI in distal colon. -- Les protéases activatrices de canal (CAP) sont des protéases à serine attachées à la membrane qui ont été identifiées comme activateurs in vitro du canal sodique épithélial (ENaC). Deux de ces protéases sont principalement étudiées dans le laboratoire. CAP1/Prss8 a été identifié préalablement comme impliqué dans l'homéostasie du sodium in vivo au niveau du côlon. Dans la première partie de cette thèse, nous avons généré et caractérisé des souris déficientes pour CAP2/Tmprss4. Les souris sont en bonne santé et viables, et elles ne présentent pas de phénotype visible. Nous avons étudié l'activité et l'expression d'ENaC sous diète normale et déficiente en sodium, et nous avons démontré que CAP2 n'est pas un régulateur essentiel de l'homéostasie sodique in vivo. Nous avons ensuite étudié si CAP2 est impliqué dans l'homéostasie du potassium. Nous avons détecté une forte dépendance du sexe lorsque les souris knock-out pour CAP2 étaient placées sous diète déficiente en potassium. Nous avons démontré dans les souris mâles une implication de CAP2 dans la régulation de la H+, K+- ATPase colonique, des récepteurs membranaires à la progestérone et de leur partenaires de liaison, ainsi que dans la possible signalisation médiée par le clivage du récepteur aux glucocorticoïdes. Nous avons étudié l'interaction possible entre CAPI et CAP2 en générant et en caractérisant deux groupes d'étude de souris différents, porteurs de différentes mutations hypomorphiques dans le gène de CAPI, et déficients pour CAP2. Nous avons pu montrer qu'une expression équilibrée de CAPI et CAP2 est requise pour le maintien de l'intégrité de la peau et pour le développement normal du placenta. Les embryons knock-out pour CAPI meurent suite à une défaillance placentaire, et la délétion additionnelle et combinée de CAP2 permet la survie jusqu'à la naissance. Nous supposons que CAPI et CAP2 sont impliqués dans la même voie de signalisation au niveau du placenta que celle proposée dans les études de cancer, impliquant l'intégrine a5, ERK, AKT, E- et N-cadhérine. De plus, nous avons étudié si CAPI est impliqué dans la pathogenèse et la susceptibilité de colite chronique expérimentale dans un modèle de rat mutant. En administrant aux rats mutants pour CAPI du Dextran sodium sulfate, nous avons induit une inflammation chronique du côlon, et nous avons pu mettre en évidence le rôle protecteur de CAPI au niveau histopathologique et au niveau clinique. En conclusion, nous avons démontré que CAP2 n'est pas un régulateur essentiel de l'homéostasie sodique médiée par ENaC in vivo, mais plutôt de l'homéostasie potassique d'une manière dépendante du sexe et impliquant la H+, K+-ATPase colonique, les récepteurs membranaires à la progestérone et le récepteur aux glucocorticoïdes. Nous avons étudié si CAPI et CAP2 interagissent au niveau fonctionnel, et nous avons montré qu'une expression équilibrée entre CAPI et CAP2 est requise dans la peau et le placenta. L'expression déséquilibrée de CAPI et CAP2 mène à une altération de la signalisation associée à l'EMT. Nous avons étudié si CAPI est impliqué dans la pathogenèse et la susceptibilité de colite chronique expérimentale, et nous avons démontré le rôle protecteur de CAPI dans le côlon distal.
Resumo:
Valproic acid (VPA) is a major therapeutic agent in the treatment of epilepsy and other neurological disorders. It is metabolized in humans and rats primarily along two pathways: direct glucuronidation to yield the acyl glucuronide (VPA-G) and beta-oxidation. We have shown much earlier in the Sprague-Dawley rat that i.v. administration of sodium valproate (NaVPA) caused a marked choleresis ( mean of 3.3 times basal bile flow after doses of 150 mg/kg), ascribed to the passive osmotic flow of bile water following excretion of VPA-G across the canalicular membrane. Active biliary pumping of anionic drug conjugates across the canalicular membrane is now believed to be attributable to transporter proteins, in particular Mrp2, which is deficient in the TR- ( a mutant Wistar) rat. In the present study, normal Wistar and Mrp2-deficient TR- rats were dosed i.v. with NaVPA at 150 mg/kg. In the Wistar rats, there was a peak choleretic effect of about 3.2 times basal bile flow, occurring at about 30 to 45 min postdose ( as seen previously with Sprague-Dawley rats). In TR- rats given the same i.v. dose, there was no evidence of postdose choleresis. The choleresis was correlated with the excretion of VPA-G into bile. In Wistar rats, 62.8 +/- 7.7% of the NaVPA dose was excreted in bile as VPA-G, whereas in TR- rats, only 2.0 +/- 0.6% of the same dose was excreted as VPA-G in bile ( with partial compensatory excretion of VPA-G in urine). This study underlines the functional ( bile flow) consequences of biliary transport of xenobiotic conjugated metabolites.
Resumo:
The epithelial amiloride-sensitive sodium channel (ENaC) controls transepithelial Na+ movement in Na(+)-transporting epithelia and is associated with Liddle syndrome, an autosomal dominant form of salt-sensitive hypertension. Detailed analysis of ENaC channel properties and the functional consequences of mutations causing Liddle syndrome has been, so far, limited by lack of a method allowing specific and quantitative detection of cell-surface-expressed ENaC. We have developed a quantitative assay based on the binding of 125I-labeled M2 anti-FLAG monoclonal antibody (M2Ab*) directed against a FLAG reporter epitope introduced in the extracellular loop of each of the alpha, beta, and gamma ENaC subunits. Insertion of the FLAG epitope into ENaC sequences did not change its functional and pharmacological properties. The binding specificity and affinity (Kd = 3 nM) allowed us to correlate in individual Xenopus oocytes the macroscopic amiloride-sensitive sodium current (INa) with the number of ENaC wild-type and mutant subunits expressed at the cell surface. These experiments demonstrate that: (i) only heteromultimeric channels made of alpha, beta, and gamma ENaC subunits are maximally and efficiently expressed at the cell surface; (ii) the overall ENaC open probability is one order of magnitude lower than previously observed in single-channel recordings; (iii) the mutation causing Liddle syndrome (beta R564stop) enhances channel activity by two mechanisms, i.e., by increasing ENaC cell surface expression and by changing channel open probability. This quantitative approach provides new insights on the molecular mechanisms underlying one form of salt-sensitive hypertension.
Resumo:
Rat 1 fibroblasts transfected to express either the wild-type hamster alpha 1B-adrenergic receptor or a constitutively active mutant (CAM) form of this receptor resulting from the alteration of amino acid residues 288-294 to encode the equivalent region of the human beta 2-adrenergic receptor were examined. The basal level of inositol phosphate generation in cells expressing the CAM alpha 1B-adrenergic receptor was greater than for the wild-type receptor, The addition of maximally effective concentrations of phenylephrine or noradrenaline resulted in substantially greater levels of inositol phosphate generation by the CAM alpha 1B-adrenergic receptor, although this receptor was expressed at lower steady-state levels than the wild-type receptor. The potency of both phenylephrine and noradrenaline to stimulate inositol phosphate production was approx. 200-fold greater at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. In contrast, endothelin 1, acting at the endogenously expressed endothelin ETA, receptor, displayed similar potency and maximal effects in the two cell lines. The sustained presence of phenylephrine resulted in down-regulation of the alpha subunits of the phosphoinositidase C-linked, pertussis toxin-insensitive, G-proteins G9 and G11 in cells expressing either the wild-type or the CAM alpha 1B-adrenergic receptor. The degree of down-regulation achieved was substantially greater in cells expressing the CAM alpha 1B-adrenergic receptor at all concentrations of the agonist. However, in this assay phenylephrine displayed only a slightly greater potency at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. There were no detectable differences in the basal rate of G9 alpha/G11 alpha degradation between cells expressing the wild-type or the CAMalpha 1B-adrenergic receptor. In both cell lines the addition of phenylephrine substantially increased the rate of degradation of these G-proteins, with a greater effect at the CAM alpha 1B-adrenergic receptor. The enhanced capacity of agonist both to stimulate second-messenger production at the CAM alpha 1B-adrenergic receptor and to regulate cellular levels of its associated G-proteins by stimulating their rate of degradation is indicative of an enhanced stoichiometry of coupling of this form of the receptor to G9 and G11.
Resumo:
The alpha1-adrenergic agonist phenylephrine stimulated phospholipase D (PLD) activity in Rat 1 fibroblasts transfected to express either the wild-type hamster alpha1B-adrenoceptor or a constitutively active mutant (CAM) form of this receptor. The EC50 for agonist stimulation of PLD activity was substantially lower at the CAM receptor than at the wild-type receptor as previously noted for phenylephrine stimulation of phosphoinositidase C activity. Sustained treatment of cells expressing the CAM alpha1B-adrenoceptor with phentolamine resulted in a marked up-regulation in levels of this receptor with half-maximal effects produced within 24 h and with an EC50 of approx. 40 nM. Such an up-regulation could be produced with a range of other ligands generally viewed as alpha1-adrenoceptor antagonists but equivalent treatment of cells expressing the wild-type alpha1B-adrenoceptor was unable to mimic these effects. After sustained treatment of the CAM alpha1B-adrenoceptor expressing cells with phentolamine, basal PLD activity was increased and phenylephrine was now able to stimulate PLD activity to greater levels than in vehicle-treated CAM alpha1B-adrenoceptor-expressing cells. The EC50 for phenylephrine stimulation of PLD activity was not altered, however, by phentolamine pretreatment and the associated up-regulation of the receptor. After phentolamine-induced up-regulation of basal PLD activity, a range of alpha1-antagonists were shown to possess the characteristics of inverse agonists of the CAM alpha1B-adrenoceptor as they were able to substantially decrease the elevated basal PLD activity.
Resumo:
Glutathione (GSH) metabolism dysfunction is one risk factor in schizophrenia. A transitory brain GSH deficit was induced in Wistar (WIS) and mutant (ODS; lacking ascorbic acid synthesis) rats using BSO (l-buthionine-(S,R)-sulfoximine) from post-natal days 5-16. When GSH was re-established to physiological levels, juvenile BSO-ODS rats were impaired in the water maze task. Long after treatment cessation, adult BSO-WIS/-ODS rats showed impaired place discrimination in the homing board with distributed visual or olfactory cues. Their accuracy was restored when a single cue marked the trained position. Similarly, more working memory errors were made by adult BSO-WIS in the radial maze when several olfactory cues were present. These results reveal that BSO rats did not suffer simple sensory impairment. They were selectively impaired in spatial memory when the task required the integration of multimodal or olfactory cues. These results, in part, resemble some of the reported olfactory discrimination and cognitive impairment in schizophrenia.
Resumo:
The mechanisms sustaining high blood pressure in conscious one-kidney, one-clip Goldblatt rats were evaluated with the use of SK&F 64139, a phenylethanolamine N-methyltransferase inhibitor capable of crossing the blood-brain barrier and of captopril, an angiotensin converting enzyme inhibitor. The rats were studied 3 weeks after left renal artery clipping and contralateral nephrectomy. During the developmental phase of hypertension, two groups of rats were maintained on a regular salt (RNa) intake, whereas two other groups were given a low salt (LNa) diet. On the day of the experiment, the base-line mean blood pressure measured in the LNa rats (177.4 +/- 5.2 mm Hg, mean +/- S.E., n = 15) was similar to that measured in the RNa rats (178.7 +/- 5.4 mm Hg, n = 16). SK&F 64139 (12.5 mg p.o.) induced a significantly more pronounced (P less than .001) blood pressure decrease in the RNa rats (-25.6 +/- 3.6 mm Hg, n = 8) than in the LNa rats (-4.3 +/- 3.3 mm Hg, n = 7) during a 90-min observation period. On the other hand, captopril (10 mg p.o.) normalized blood pressure in LNa rats (n = 8), but produced only a 13.4 mm Hg blood pressure drop in RNa rats (n = 8). RNa rats treated with SK&F 64139 were found to have decreased phenylethanolamine N-methyltransferase activity by an average 80% in selected brain stem nuclei when compared with nontreated rats. No significant difference in plasma catecholamine levels was found between the RNa and LNa rats. These results suggest that, in this experimental model of hypertension, the sodium ion might increase the model of hypertension, the sodium ion might increase the vasoconstrictor contribution of the sympathetic system via a centrally mediated neurogenic mechanism while at the same time it decreases the renin-dependency of the high blood pressure.
Resumo:
Lipids play crucial roles in many aspects of glial cell biology, affecting processes ranging from myelin membrane biosynthesis to axo-glial interactions. In order to study the role of lipid metabolism in myelinating glial cells, we specifically deleted in Schwann cells the Lpin1 gene, which encodes the Mg2+-dependent phosphatidate phosphatase (PAP1) enzyme necessary for normal triacylglycerol biosynthesis. The affected animals developed pronounced peripheral neuropathy characterized by myelin degradation, Schwann cell dedifferentiation and proliferation, and a reduction in nerve conduction velocity. The observed demyelination is mediated by endoneurial accumulation of the substrate of the PAP1 enzyme, phosphatidic acid (PA). In addition, we show that PA is a potent activator of the MEK-Erk pathway in Schwann cells, and that this activation is required for PA-induced demyelination. Our results therefore reveal a surprising role for PA in Schwann cell fate determination and provide evidence of a direct link between diseases affecting lipid metabolism and abnormal Schwann cell function
Resumo:
The antifungal agent fluconazole (FLC) is widely used in clinical practice. Monitoring FLC levels is useful in complicated clinical settings and in experimental infection models. A bioassay using Candida pseudotropicalis, a simple and cost-effective method, is validated only for FLC levels ranging from 5 to 40 mg/liter. An extension of the analytical range is needed to cover most yeast MICs. A new bioassay in RPMI agar containing methylene blue was developed using C. albicans DSY1024, a mutant rendered hypersusceptible to FLC constructed by the deletion of the multidrug efflux transporter genes CDR1, CDR2, CaMDR1, and FLU1. Reproducible standard curves were obtained with FLC concentrations in plasma ranging from 1 to 100 mg/liter (quadratic regression coefficient > 0.997). The absolute sensitivity was 0.026 microg of FLC. The method was internally validated according to current guidelines for analytical method validation. Both accuracy and precision lied in the required +/-15% range. FLC levels measured by bioassay and by high-performance liquid chromatography (HPLC) performed with 62 plasma samples from humans and rats showed a strong correlation (coefficients, 0.979 and 0.995, respectively; percent deviations of bioassay from HPLC values, 0.44% +/- 15.31% and 2.66% +/- 7.54%, respectively). In summary, this newly developed bioassay is sensitive, simple, rapid, and inexpensive. It allows nonspecialized laboratories to determine FLC levels in plasma to within the clinically relevant concentration range and represents a useful tool for experimental treatment models.
Resumo:
Growth hormone (GH) stimulates mandibular growth but its effect on the mandibular condylar cartilage is not well. understood. Objective: This study was designed to understand the influence of GH on mitotic activity and on chondrocytes maturation. The effect of GH on cartilage thickness was also determined. Design: An animal model witt differences in GH status was determined by comparing mutant Lewis dwarf rats with reduced pituitary GH synthesis (dwarf), with normal rats and dwarf animals treated with GH. Six dwarf rats were injected with GH for 6 days, while other six normal rats and six dwarf rats composed other two groups. Mandibular condylar tissues were processed and stained for Herovici's stain and immunohistochemistry, for proliferating cell nuclear antigen (PCNA) and alkaline phosphatase (ALP). Measurements of cartilage thickness as well as the numbers of immunopositive cells for each antibody were analysed by one-way analysis of variance. Results: Cartilage thickness was significantly reduced in the dwarf animals treated with GH. PCNA expression was significant lower in the dwarf rats, but significantly increased when these animals were treated with GH. ALP expression was significant higher in the dwarf animals, while it was significantly reduced in the dwarf animals treated with GH. Conclusions: The results from this study showed that GH stimulates mitotic activity and delays cartilage cells maturation in the mandibular condyte. This effect at the cellular Level may produce changes in the cartilage thickness. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Previous research has shown that crotamine, a toxin isolated from the venom of Crotalus durissus terrificus, induces the release of acetylcholine and dopamine in the central nervous system of rats. Particularly, these neurotransmitters are important modulators of memory processes. Therefore, in this study we investigated the effects of crotamine infusion on persistence of memory in rats. We verified that the intrahippocampal infusion of crotamine (1 μg/μl; 1 μl/side) improved the persistence of object recognition and aversive memory. By other side, the intrahippocampal infusion of the toxin did not alter locomotor and exploratory activities, anxiety or pain threshold. These results demonstrate a future prospect of using crotamine as potential pharmacological tool to treat diseases involving memory impairment, although it is still necessary more researches to better elucidate the crotamine effects on hippocampus and memory.
Resumo:
Ethanol consumption damages the prostate, and testosterone is known by anti-inflammatory role. The cytokines were investigated in the plasma and ventral prostate of UChB rats submitted or not to testosterone therapy by ELISA and Western blot, respectively. Additionally, inflammatory foci and mast cells were identified in the ventral prostate slides stained by hematoxylin and eosin and toluidine blue, respectively. Inflammatory foci were found in the ethanol-treated animals and absent after testosterone therapy. Plasma levels of IL-6 and IL-10 were not changed while TNFα and TFG-β1 were increased in the animals submitted testosterone therapy. Regarding to ventral prostate, IL-6 did not alter, while IL-10, TNFα, and TFG-β1 were increased after testosterone therapy. Ethanol increases NFR2 in addition to high number of intact and degranulated mast cell which were reduced after testosterone therapy. So, ethanol and testosterone differentially modulates the cytokines in the plasma and prostate.
Resumo:
Association between hypertension and bladder symptoms has been described. We hypothesized that micturition dysfunction may be associated with renin-angiotensin system (RAS) acting in urethra. The effects of the anti-hypertensive drugs losartan (AT1 antagonist) and captopril (angiotensin-converting enzyme inhibitor) in comparison with atenolol (β1-adrenoceptor antagonist independently of RAS blockade) have been investigated in bladder and urethral dysfunctions during renovascular hypertension in rats. Two kidney-1 clip (2K-1C) rats were treated with losartan (30 mg/kg/day), captopril (50mg/kg/day) or atenolol (90 mg/kg/day) for eight weeks. Cystometric study, bladder and urethra smooth muscle reactivities, measurement of cAMP levels and p38 MAPK phosphorylation in urinary tract were determined. Losartan and captopril markedly reduced blood pressure in 2K-1C rats. The increases in non-voiding contractions, voiding frequency and bladder capacity in 2K-1C rats were prevented by treatments with both drugs. Likewise, losartan and captopril prevented the enhanced bladder contractions to electrical-field stimulation (EFS) and carbachol, along with the impaired relaxations to β-adrenergic-cAMP stimulation. Enhanced neurogenic contractions and impaired nitrergic relaxations were observed in urethra from 2K-1C rats. Angiotensin II also produced greater urethral contractions that were accompanied by higher phosphorylation of p38 MAPK in urethral tissues of 2K-1C rats. Losartan and captopril normalized the urethral dysfunctions in 2K-1C rats. In contrast, atenolol treatment largely reduced the blood pressure in 2K-1C rats but failed to affect the urinary tract smooth muscle dysfunction. The urinary tract smooth muscle dysfunction in 2K-1C rats takes place by local RAS activation irrespective of levels of arterial blood pressure.
Resumo:
Cryosurgery is an efficient therapeutic technique used to treat benign and malignant cutaneous diseases. The primary active mechanism of cryosurgery is related to vascular effects on treated tissue. After a cryosurgical procedure, exuberant granulation tissue is formed at the injection site, probably as a result of angiogenic stimulation of the cryogen and inflammatory response, particularly in endothelial cells. To evaluate the angiogenic effects of freezing, as part of the phenomenon of healing rat skin subjected to previous injury. Two incisions were made in each of the twenty rats, which were divided randomly into two groups of ten. After 3 days, cryosurgery with liquid nitrogen was performed in one of incisions. The rats' samples were then collected, cut and stained to conduct histopathological examination, to assess the local angiogenesis in differing moments and situations. It was possible to demonstrate that cryosurgery, in spite of promoting cell death and accentuated local inflammation soon after its application, induces quicker cell proliferation in the affected tissue and maintenance of this rate in a second phase, than in tissue healing without this procedure. These findings, together with the knowledge that there is a direct relationship between mononuclear cells and neovascularization (the development of a rich system of new vessels in injury caused by cold), suggest that cryosurgery possesses angiogenic stimulus, even though complete healing takes longer to occur. The significance level for statistical tests was 5% (p<0,05).
Resumo:
The present study investigated the effects of running at 0.8 or 1.2 km/h on inflammatory proteins (i.e., protein levels of TNF- α , IL-1 β , and NF- κ B) and metabolic proteins (i.e., protein levels of SIRT-1 and PGC-1 α , and AMPK phosphorylation) in quadriceps of rats. Male Wistar rats at 3 (young) and 18 months (middle-aged rats) of age were divided into nonexercised (NE) and exercised at 0.8 or 1.2 km/h. The rats were trained on treadmill, 50 min per day, 5 days per week, during 8 weeks. Forty-eight hours after the last training session, muscles were removed, homogenized, and analyzed using biochemical and western blot techniques. Our results showed that: (a) running at 0.8 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with NE rats; (b) these responses were lower for the inflammatory proteins and higher for the metabolic proteins in young rats compared with middle-aged rats; (c) running at 1.2 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with 0.8 km/h; (d) these responses were similar between young and middle-aged rats when trained at 1.2 km. In summary, the age-related increases in inflammatory proteins, and the age-related declines in metabolic proteins can be reversed and largely improved by treadmill training.