997 resultados para Mushroom - production


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Research on mushroom production and products is gaining more grounds globally and in particular Nigeria. This study was carried out to determine nutritional relationship between the substrate used for cultivation and the fruiting body on each of the substrates. Agro-wastes, namely: palm ( Elaeis guineensis ) fruit shaft, plantain ( Musa paradisiaca ) leaves, sawdust and kenaf ( Hibiscus cannabinus ) stem, were assessed for suitability as substrates for cultivation of oyster mushroom ( Pleurotus floridanus Singer ). The spawn of the mushroom was used to inoculate each of the substrates, using a complete randomised design, with five replicates for each substrate. Results showed that all the substrates supported mycelia growth and development of fruiting bodies of the fungus. There were significant differences (P<0.05) among substrates in terms of number of days to complete mycelia run, with the least recorded in palm fruit shaft (25.20), and the highest in kenaf (32.40). Total yield also differed significantly (P<0.05), with the highest in palm fruit shaft (51.4 g 100 g-1) and lowest in plantain leaves (6.0 g 100 g-1). There was also significant difference (P<0.05) in the nutritional content of fruiting bodies, the highest fat content being on plantain leaves (1.72 g 100 g-1) and the lowest on palm fruit shaft (0.55 g 100 g-1). The trend was similar for mushroom substrates, plantain leaves having (2.55 g 100 g-1) and palm fruit shaft, (0.41g 100 g-1). Starch content for fruiting bodies was highest on sawdust (5.31 g 100 g-1) and lowest on kenaf (2.66 g 100 g-1), while for mushroom substrates, kenaf was (0.33g 100 g-1) and palm fruit shaft was (4.45g 100 g-1). There was a positive correlation (r = 0.24) between the nutrient of fruiting bodies and that of the substrate on which it was cultivated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Composting is the biological conversion of solid organic waste into usable end products such as fertilizers, substrates for mushroom production and biogas. Although composts are highly variable in their bulk composition, composting material is generally based on lignocellulose compounds derived from agricultural, forestry, fruit and vegetable processing, household and municipal wastes. Lignocellulose is very recalcitrant; however it is rich and abundant source of carbon and energy. Therefore lignocellulose degradation is essential for maintaining the global carbon cycle. In compost, the active component involved in the biodegradation and conversion processes is the resident microbial population, among which microfungi play a very important role. In composting pile the warm, humid, and aerobic environment provides the optimal conditions for their development. Microfungi use many carbon sources, including lignocellulosic polymers and can survive in extreme conditions. Typically microfungi are responsible for compost maturation. In order to improve the composting process, more information is needed about the microbial degradation process. Better knowledge on the lignocellulose degradation by microfungi could be used to optimize the composting process. Thus, this thesis focused on lignocellulose and humic compounds degradation by a microfungus Paecilomyces inflatus, which belongs to a flora of common microbial compost, soil and decaying plant remains. It is a very common species in Europe, North America and Asia. The lignocellulose and humic compounds degradation was studied using several methods including measurements of carbon release from 14C-labelled compounds, such as synthetic lignin (dehydrogenative polymer, DHP) and humic acids, as well as by determination of fibre composition using chemical detergents and sulphuric acid. Spectrophotometric enzyme assays were conducted to detect extracellular lignocellulose-degrading hydrolytic and oxidative enzymes. Paecilomyces inflatus secreted clearly extracellular laccase to the culture media. Laccase was involved in the degradation process of lignin and humic acids. In compost P. inflatus mineralised 6-10% of 14C-labelled DHP into carbon dioxide. About 15% of labelled DHP was converted into water-soluble compounds. Also humic acids were partly mineralised and converted into water-soluble material, such as low-molecular mass fulvic acid-like compounds. Although laccase activity in aromatics-rich compost media clearly is connected with the degradation process of lignin and lignin-like compounds, it may preferentially effect the polymerisation and/or detoxification of such aromatic compounds. P. inflatus can degrade lignin and carbohydrates also while growing in straw and in wood. The cellulolytic enzyme system includes endoglucanase and β-glucosidase. In P. inflatus the secretion of these enzymes was stimulated by low-molecular-weight aromatics, such as soil humic acid and veratric acid. When strains of P. inflatus from different ecophysiological origins were compared, indications were found that specific adaptation strategies needed for lignocellulosics degradation may operate in P. inflatus. The degradative features of these microfungi are on relevance for lignocellulose decomposition in nature, especially in soil and compost environments, where basidiomycetes are not established. The results of this study may help to understand, control and better design the process of plant polymer conversion in compost environment, with a special emphasis on the role of ubiquitous microfungi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cladobotryutn dendroides, causal agent of cobweb disease of Agaricus bisporus, has become increasingly resistant to methylbenzimidazole carbamate (MBC) fungicides following the extensive use of MBC in cultivated mushroom production in Ireland. Of 38 isolates of C. dendroides obtained from Irish mushroom units, 34 were resistant to carbendazim. Primers based on conserved regions of the -tubulin gene were used to amplify and sequence a portion of the -tubulin gene in C. dendroides. A point mutation was detected at codon 50 in isolates resistant to benzimidazole fungicides, causing an amino acid substitution from tyrosine to cysteine. Species-specific PCR primers were designed to amplify the region of the -tubulin gene containing this substitution. The point mutation removed an Ace I restriction site in the -tubulin gene sequence of resistant isolates. Digestion of the PCR product with Ace I thus provides a rapid diagnostic test to differentiate sensitive and resistant isolates of this fungus. EMBL accession number: YI2256.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agaricus brasiliensis is a Brazilian basidiomycete which has been cultivated and consumed around the world as a therapeutic food. Casing layer is one of the most important steps on A. brasiliensis cultivation and European peat is the most used casing layer on Agaricus bisporus cultivation. Besides the importance of it on mushroom cultivation the peat import could be a risk of exotic organism introduction. Alternative as Brazilian peat is barely used for mushroom growers in Brazil. Thus, the objective of this work was to evaluate Brazilian peat with and without pasteurization as casing layer on A. brasiliensis cultivation. The fungus was previously grown on wheat grains and transferred to a substratum prepared by composted traditional method. After mycelium colonization of the substratum a pasteurized or non pasteurized Brazilian peat (casing layer) was added. It was concluded that pasteurization of the casing layer increases in 30% yield after 65 days of cultivation. There is no difference of yield for pasteurized and non pasteurized casing layer until 30 days of cultivation. An increase of flies is observed in non pasteurized casing layer. The production flush is easily perceived with pasteurized casing layer but not with non pasteurized casing layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Commercially, Pleurotus spp. of mushroom are cultivated in bags. After mushroom cultivation, spent substrate remains as residual material. Proper recycling of spent substrate is beneficial for our economy. Spent substrate can be utilized for various other value added purposes through the proper knowledge of its components. Composition of various components depends on the activity of extracellular enzymes in the spent substrate. The present study was conducted to know the enzyme profile of some major extracellular enzymes - cellulase, hemicellulase (xylanase), pectinase and ligninase (lignin peroxidase and laccase) and to estimate cellulose, hemicellulose, pectin and lignin in the substrate. The use of spent substrate as a source of fibre and ethanol, and in the biodegradation of phenol by Pleurotus spp. was also investigated

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an attempt to recycle the waste substrates of the oyster-mushroom crop, tanks were stocked with seed of Indian major carp Cirrhinus mrigala at the rate of 600,000/ha and waste substrate was applied at weekly interval at 0, 50, 100, 150, 200 and 250 g/tank. Oyster mushroom waste not only provided highly nutritive colonised detritus to the fish as direct feed, but also produced rich plankton in the tank. In waste treated tanks, production was better than in the control in 150, 200 and 250 g/tank treatment suggesting the possibility of fish-oyster mushroom integration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spent substrate, the residual material of mushroom cultivation, causes disposal problems for cultivators. Currently the spent substrate of different mushrooms is used mainly for composting. Edible mushrooms of Pleurotus sp. can grow on a wide range of lignocellulosic substrates. In the present study, Pleurotus eous was grown on paddy straw and the spent substrate was used for the production of ethanol. Lignocellulosic biomass cannot be saccharified by enzymes to high yield of ethanol without pretreatment. The root cause for the recalcitrance of lignocellulosic biomass such as paddy straw is the presence of lignin and hemicelluloses on the surface of cellulose. They form a barrier and prevent cellulase from accessing the cellulose in the substrate. In the untreated paddy straw, the amount of hemicelluloses and lignin (in % dry weight) were 20.30 and 20.34 respectively and the total reducing sugar was estimated to be 5.40 mg/g. Extracellular xylanase and ligninases of P. eous could reduce the amount of hemicelluloses and lignin to 16 and 11(% dry weight) respectively, by 21st day of cultivation. Growth of mushroom brought a seven fold increase in the total reducing sugar yield (39.20 mg/g) and six fold increase in the production of ethanol (6.48 g/L) after 48hrs of fermentation, when compared to untreated paddy straw

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioethanol is a liquid fuel obtained from fermentation of sugar/starch crops. Lignocellulosic biomass being less expensive is considered a future alternative for the food crops. One of the main challenges for the use of lignocellulosics is the development of an efficient pre-treatment process. Pretreatments are classified into three - physical, chemical, and biological pretreatment. Chemical process has not been proven suitable so far, due to high costs and production of undesired by-products. Biologically, hydrolysis can be enhanced by microbial or enzymatic pretreatment. Studies show that the edible mushrooms of Pleurotus sp. produce several extracellular enzymes which reduce the structural and chemical complexity of fibre. In the present study, P. ostreatus and P. eous were cultivated on paddy straw. Spent substrate left after mushroom cultivation was powdered and used for ethanol production. Saccharomyces sp. was used for fermentation studies. Untreated paddy straw was used as control. Production of ethanol from P. ostreatus substrate was 5.5 times more when compared to untreated paddy straw, while the spent substrate of P. eous gave 5 times increase in ethanol yield. Assays showed the presence of several extracellular enzymes in the spent substrate of both species, which together contributed to the increase in ethanol yield

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: This work assesses the agronomic performance of grapeseed meal, before and after oil extraction, in nutritional compost supplement when growing the mushroom species Agaricus bisporus (Lange) Imbach. The effect of formaldehyde treatment before using this compost is also considered. Materials were applied at different doses at spawning. Along with non-supplemented compost, three commercial nutritional supplements were used as controls.RESULTS: In general terms, grapeseed meal performance was similar to that of commercial delayed-release nutrients, but improved the non-supplemented compost response. We highlight that grapeseed enhances performance as larger yields of harvested mushrooms were obtained with greater dry weight content; however, their protein content was lower. The best performance was displayed by fresh formaldehyde-treated grapeseed (6000 ppm) when applied to the 10 g kg(-1) compost dose.CONCLUSIONS: Our findings suggest that grapeseed meal offers a great potential to be applied on a commercial scale. The addition of grapeseed resulted in an enhanced performance as shown by the higher number of harvested mushrooms. The use of grapeseed meal (extracted or non-extracted), a low-cost ingredient with high levels of carbohydrates, may suppose an economic profit on the basis of the positive effect of adding carbon in the mushroom cultivation. (C) 2012 Society of Chemical Industry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research was to show the mathematical data obtained through the correlations found between the physical and chemical characteristics of casing layers and the final mushrooms' properties. For this purpose, 8 casing layers were used: soil, soil + peat moss, soil + black peat, soil + composted pine bark, soil + coconut fibre pith, soil + wood fibre, soil + composted vine shoots and, finally, the casing of La Rioja subjected to the ruffling practice. The conclusion that interplays in the fructification process with only the physical and chemical characteristics of casing are complicated was drawn. The mathematical data obtained in earliness could be explained in non-ruffled cultivation. The variability observed for the mushroom weight and the mushroom diameter variables could be explained in both ruffled and non-ruffled cultivations. Finally, the properties of the final quality of mushrooms were established by regression analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)