982 resultados para Muscle wasting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myotonic dystrophy type 1 (DM1 or Steinert's disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3' untranslated region (UTR) of the Dystrophia ll/Iyotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work examined the effects of a novel dairy fatty acid conjugated linoleic acid (CLA) and its effects on muscle wasting in advanced cancer. Results showed a positive anti-inflammatory role of CLA on the supression of tumour growth and established a model for studying the action of CLA in human muscle-wasting conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer cachexia is a wasting condition, driven by systemic inflammation and oxidative stress. This study investigated eicosapentaenoic acid (EPA) in combination with oxypurinol as a treatment in a mouse model of cancer cachexia. Mice with cancer cachexia were randomized into 4 treatment groups (EPA (0.4 g/kg/day), oxypurinol (1 mmol/L ad-lib), combination, or control), and euthanized after 29 days. Analysis of oxidative damage to DNA, mRNA analysis of pro-oxidant, antioxidant and proteolytic pathway components, along with enzyme activity of pro- and antioxidants were completed on gastrocnemius muscle. The control group displayed earlier onset of tumor compared to EPA and oxypurinol groups (P<0.001). The EPA group maintained body weight for an extended duration (20 days) compared to the oxypurinol (5 days) and combination (8 days) groups (P<0.05). EPA (18.2±3.2 pg/ml) and combination (18.4±3.7 pg/ml) groups had significantly higher 8-OH-dG levels than the control group (12.9±1.4 pg/ml, P≤0.05) indicating increased oxidative damage to DNA. mRNA levels of GPx1, MURF1 and MAFbx were higher following EPA treatment compared to control (P≤0.05). Whereas oxypurinol was associated with higher GPx1, MnSOD, CAT, XDH, MURF1, MAFbx and UbB mRNA compared to control (P≤0.05). Activity of total SOD was higher in the oxypurinol group (32.2±1.5 U/ml) compared to control (27.0±1.3 U/ml, P<0.01), GPx activity was lower in the EPA group (8.76±2.0 U/ml) compared to control (14.0±1.9 U/ml, P<0.05), and catalase activity was lower in the combination group (14.4±2.8 U/ml) compared to control (20.9±2.0 U/ml, P<0.01). There was no change in XO activity. The increased rate of weight decline in mice treated with oxypurinol indicates that XO may play a protective role during the progression of cancer cachexia, and its inhibition is detrimental to outcomes. In combination with EPA, there was little significant improvement from control, indicating oxypurinol is unlikely to be a viable treatment compound in cancer cachexia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We aimed to investigate the possible role of creatine (CR) supplementation in counteracting dexamethasone-induced muscle wasting and insulin resistance in rats. Also, we examined whether CR intake would modulate molecular pathways involved in muscle remodeling and insulin signaling. Animals were randomly divided into four groups: (1) dexamethasone (DEX); (2) control pair-fed (CON-PF); (3) dexamethasone plus CR (DEX-CR); and (4) CR pair-fed (CR-PF). Dexamethasone (5 mg/kg/day) and CR (5 g/kg/day) were given via drinking water for 7 days. Plantaris and extensor digitorum longus (EDL) muscles were removed for analysis. Plantaris and EDL muscle mass were significantly reduced in the DEX-CR and DEX groups when compared with the CON-PF and CR-PF groups (P < 0.05). Dexamethasone significantly decreased phospho-Ser(473)-Akt protein levels compared to the CON-PF group (P < 0.05) and CR supplementation aggravated this response (P < 0.001). Serum glucose was significantly increased in the DEX group when compared with the CON-PF group (DEX 7.8 +/- A 0.6 vs. CON-PF 5.2 +/- A 0.5 mmol/l; P < 0.05). CR supplementation significantly exacerbated hyperglycemia in the dexamethasone-treated animals (DEX-CR 15.1 +/- A 2.4 mmol/l; P < 0.05 vs. others). Dexamethasone reduced GLUT-4 translocation when compared with the CON-PF and CR-PF (P < 0.05) groups and this response was aggravated by CR supplementation (P < 0.05 vs. others). In conclusion, supplementation with CR resulted in increased insulin resistance and did not attenuate muscle wasting in rats treated with dexamethasone. Given the contrast with the results of human studies that have shown benefits of CR supplementation on muscle atrophy and insulin sensitivity, we suggest caution when extrapolating this animal data to human subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS Skeletal muscle wasting affects 20% of patients with chronic heart failure and has serious implications for their activities of daily living. Assessment of muscle wasting is technically challenging. C-terminal agrin-fragment (CAF), a breakdown product of the synaptically located protein agrin, has shown early promise as biomarker of muscle wasting. We sought to investigate the diagnostic properties of CAF in muscle wasting among patients with heart failure. METHODS AND RESULTS We assessed serum CAF levels in 196 patients who participated in the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Muscle wasting was identified using dual-energy X-ray absorptiometry (DEXA) in 38 patients (19.4%). Patients with muscle wasting demonstrated higher CAF values than those without (125.1 ± 59.5 pmol/L vs. 103.8 ± 42.9 pmol/L, P = 0.01). Using receiver operating characteristics (ROC), we calculated the optimal CAF value to identify patients with muscle wasting as >87.5 pmol/L, which had a sensitivity of 78.9% and a specificity of 43.7%. The area under the ROC curve was 0.63 (95% confidence interval 0.56-0.70). Using simple regression, we found that serum CAF was associated with handgrip (R = - 0.17, P = 0.03) and quadriceps strength (R = - 0.31, P < 0.0001), peak oxygen consumption (R = - 0.5, P < 0.0001), 6-min walk distance (R = - 0.32, P < 0.0001), and gait speed (R = - 0.2, P = 0.001), as well as with parameters of kidney and liver function, iron metabolism and storage. CONCLUSION CAF shows good sensitivity for the detection of skeletal muscle wasting in patients with heart failure. Its assessment may be useful to identify patients who should undergo additional testing, such as detailed body composition analysis. As no other biomarker is currently available, further investigation is warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myostatin, a member of the transforming growth factor-β superfamily, is a genetic determinant of skeletal muscle growth. Mice and cattle with inactivating mutations of myostatin have marked muscle hypertrophy. However, it is not known whether myostatin regulates skeletal muscle growth in adult men and whether increased myostatin expression contributes to wasting in chronic illness. We examined the hypothesis that myostatin expression correlates inversely with fat-free mass in humans and that increased expression of the myostatin gene is associated with weight loss in men with AIDS wasting syndrome. We therefore cloned the human myostatin gene and cDNA and examined the gene’s expression in the skeletal muscle and serum of healthy and HIV-infected men. The myostatin gene comprises three exons and two introns, maps to chromosomal region 2q33.2, has three putative transcription initiation sites, and is transcribed as a 3.1-kb mRNA species that encodes a 375-aa precursor protein. Myostatin is expressed uniquely in the human skeletal muscle as a 26-kDa mature glycoprotein (myostatin-immunoreactive protein) and secreted into the plasma. Myostatin immunoreactivity is detectable in human skeletal muscle in both type 1 and 2 fibers. The serum and intramuscular concentrations of myostatin-immunoreactive protein are increased in HIV-infected men with weight loss compared with healthy men and correlate inversely with fat-free mass index. These data support the hypothesis that myostatin is an attenuator of skeletal muscle growth in adult men and contributes to muscle wasting in HIV-infected men.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are proposals for the implementation of beta(2)-adrenoceptor agonists for the management of muscle wasting diseases. The idea has been initiated by studies in animal models which show that beta(2)-adrenoceptor agonists cause hypertrophy of skeletal muscle. Their use in clinical practice will also need an understanding of possible effects of activation of human heart beta(2)-adrenoceptors. Consequences could include an increased probability of arrhythmias in susceptible patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Loss of muscle protein is a common feature of wasting diseases where currently treatment is limited. This study investigates the potential of epigallocatechin-3-gallate (EGCg), the most abundant catechin in green tea, to reverse the increased protein degradation and rescue the decreased protein synthesis which leads to muscle atrophy. Methods: Studies were conducted in vitro using murine C2C12myotubes. Increased protein degradation and reduced rates of protein synthesis were induced by serum starvation and tumour necrosis factor-α (TNF-α). Results: EGCg effectively attenuated the depression of protein synthesis and increase in protein degradation in murine myotubes at concentrations as low as 10 μM. Serum starvation increased expression of the proteasome 20S and 19S subunits, as well as the proteasome ‘chymotrypsin-like’ enzyme activity, and these were all attenuated down to basal values in the presence of EGCg. Serum starvation did not increase expression of the ubiquitin ligases MuRF1 and MAFbx, but EGCg reduced their expression below basal levels, possibly due to an increased expression of phospho Akt (pAkt) and phospho forkhead box O3a (pFoxO3a). Attenuation of protein degradation by EGCg was increased in the presence of ZnSO4, suggesting an EGCg-Zn2+complex may be the active species. Conclusion: The ability of EGCg to attenuate depressed protein synthesis and increase protein degradation in the myotubule model system suggests that it may be effective in preserving skeletal muscle mass in catabolic conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inhibition of myostatin signalling or its biological activity has recently emerged as a potential remedial approach against muscle wasting and degenerative diseases such as muscular dystrophies. In the present study we systemically administered a recombinant AAV8 vector expressing a mutated myostatin propeptide (AAV8ProMyo) to healthy mice in order to assess its impact on the histological, cellular and physiological properties of the skeletal muscle, exploiting the fact that myostatin is naturally inhibited by its own propeptide. We report that a single intravenous administration of AAV8ProMyo leads to increases in muscle mass of tibialis anterior, extensor digitorum longus and gastrocnemius muscles 8 weeks post-injection and tibialis anterior, gastrocnemius and rectus femoris muscles 17 weeks post-injection. Moreover, treatment resulted in muscle fibre hypertrophy but not hyperplasia, with IIB myofibres responding to the greatest extent following propeptide-induced myostatin inhibition. Additionally, myofibre nuclear: cytoplasmic ratio was decreased in the AAV8ProMyo treated animals. Importantly, the hypertrophic EDL muscle 8 weeks after AAV8ProMyo treatment did not show the dramatic decrease in specific force displayed by the germline myostatin null mice. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The lack of myostatin promotes growth of skeletal muscle, and blockade of its activity has been proposed as a treatment for various muscle-wasting disorders. Here, we have examined two independent mouse lines that harbor mutations in the myostatin gene, constitutive null (Mstn(-/-)) and compact (Berlin High Line, BEH(c/c)). We report that, despite a larger muscle mass relative to age-matched wild types, there was no increase in maximum tetanic force generation, but that when expressed as a function of muscle size (specific force), muscles of myostatin-deficient mice were weaker than wild-type muscles. In addition, Mstn(-/-) muscle contracted and relaxed faster during a single twitch and had a marked increase in the number of type IIb fibers relative to wild-type controls. This change was also accompanied by a significant increase in type IIB fibers containing tubular aggregates. Moreover, the ratio of mitochondrial DNA to nuclear DNA and mitochondria number were decreased in myostatin-deficient muscle, suggesting a mitochondrial depletion. Overall, our results suggest that lack of myostatin compromises force production in association with loss of oxidative characteristics of skeletal muscle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Myostatin is a negative regulator of muscle mass, and several strategies are being developed to knockdown its expression to improve muscle-wasting conditions. Strategies using antimyostatin-blocking antibodies, inhibitory-binding partners, signal transduction blockers, and RNA interference system (RNAi)-based knockdown have yielded promising results and increased muscle mass in experimental animals. These approaches have, however, a number of disadvantages such as transient effects or adverse immune complications. We report here the use of antisense oligonucleotides (AOs) to manipulate myostatin pre-mRNA splicing and knockdown myostatin expression. Both 2’O-methyl phosphorothioate RNA (2’OMePS) and phosphorodiamidate morpholino oligomers (PMO) led to efficient exon skipping in vitro and in vivo and knockdown of myostatin at the transcript level. The substantial myostatin exon skipping observed after systemic injection of Vivo-PMO into normal mice led to a significant increase in soleus muscle mass as compared to the controls injected with normal saline suggesting that this approach could be feasible to ameliorate muscle-wasting pathologies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (<5 kb), truncated recombinant microdystrophin genes with deletions of most of rod and carboxyl-terminal (CT) domains of dystrophin have been developed. We have previously shown the efficiency of mRNA sequence–optimized microdystrophin (ΔR4-23/ΔCT, called MD1) with deletion of spectrin-like repeat domain 4 to 23 and CT domain in ameliorating the pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signalling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain–extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction–induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

MuRF1 is a member of the RBCC (RING, B-box, coiled-coil) superfamily that has been proposed to act as an atrogin during muscle wasting. Here, we show that MuRF1 is preferentially induced in type-II muscle fibers after denervation. Fourteen days after denervation, MuRF1 protein was further elevated but remained preferentially expressed in type-II muscle fibers. Consistent with a fiber-type dependent function of MuRF1, the tibialis anterior muscle (rich in type-II muscle fibers) was considerably more protected in MuRF1-KO mice from muscle wasting when compared to soleus muscle with mixed fiber-types. We also determined fiber-type distributions in MuRF1/MuRF2 double-deficient KO (dKO) mice, because MuRF2 is a close homolog of MuRF1. MuRF1/MuRF2 dKO mice showed a profound loss of type-II fibers in soleus muscle. As a potential mechanism we identified the interaction of MuRF1/MuRF2 with myozenin-1, a calcineurin/NFAT regulator and a factor required for maintenance of type-II muscle fibers. MuRF1/MuRF2 dKO mice had lost myozenin-1 expression in tibialis anterior muscle, implicating MuRF1/MuRF2 as regulators of the calcineurin/NFAT pathway. In summary, our data suggest that expression of MuRF1 is required for remodeling of type-II fibers under pathophysiological stress states, whereas MuRF1 and MuRF2 together are required for maintenance of type-II fibers, possibly via the regulation of myozenin-1. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rationale: The molecular mechanisms of muscle atrophy in chronic obstructive pulmonary disease (COPD) are poorly understood. In wasted animals, muscle mass is regulated by several AKT-related signaling pathways.
Objectives: To measure the protein expression of AKT, forkhead box class O (FoxO)-1 and -3, atrogin-1, the phosphophrylated form of AKT, p70S6K glycogen synthase kinase-3ß (GSK-3ß), eukaryotic translation initiation factor 4E binding protein-1 (4E-BP1), and the mRNA expression of atrogin-1, muscle ring finger (MuRF) protein 1, and FoxO-1 and -3 in the quadriceps of 12 patients with COPD with muscle atrophy and 10 healthy control subjects. Five patients with COPD with preserved muscle mass were subsequently recruited and were compared with six patients with low muscle mass.
Methods: Protein contents and mRNA expression were measured by Western blot and quantitative polymerase chain reaction, respectively.
Measurements and Main Results: The levels of atrogin-1 and MuRF1 mRNA, and of phosphorylated AKT and 4E-BP1 and FoxO-1 proteins, were increased in patients with COPD with muscle atrophy compared with healthy control subjects, whereas atrogin-1, p70S6K, GSK-3ß, and FoxO-3 protein levels were similar. Patients with COPD with muscle atrophy showed an increased expression of p70S6K, GSK-3ß, and 4E-BP1 compared with patients with COPD with preserved muscle mass.
Conclusions: An increase in atrogin-1 and MuRF1 mRNA and FoxO-1 protein content was observed in the quadriceps of patients with COPD. The transcriptional regulation of atrogin-1 and MuRF1 may occur via FoxO-1, but independently of AKT. The overexpression of the muscle hypertrophic signaling pathways found in patients with COPD with muscle atrophy could represent an attempt to restore muscle mass.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Proinflammatory cytokines, such as tumor necrosis factor (TNF)-{alpha}, contribute to muscle wasting in inflammatory disorders, where TNF{alpha} acts to regulate myogenic genes. Conjugated linoleic acid (CLA) has shown promise as an antiproliferative and antiinflammatory agent, leading to its potential as a therapeutic agent in muscle-wasting disorders. To evaluate the effect of CLA on myogenesis during inflammation, human primary muscle cells were grown in culture and exposed to varying concentrations of TNF{alpha} and the cis-9, trans-11 and trans-10, cis-12 CLA isomers. Expression of myogenic genes (Myf5, MyoD, myogenin, and myostatin) and the functional genes creatine kinase (CK) and myosin heavy chain (MHC IIx) were measured by real-time PCR. TNF{alpha} significantly downregulated MyoD and myogenin expression, whereas it increased Myf5 expression. These changes corresponded with a decrease in both CK and MHC IIx expression. Both isomers of CLA mimicked the inhibitory effect of TNF{alpha} treatment on MyoD and myogenin expression, whereas myostatin expression was diminished in the presence of both isomers of CLA either alone or in combination with TNF{alpha}. Both isomers of CLA decreased CK and MHC IIx expression. These findings demonstrate that TNF{alpha} can have specific regulatory effects on myogenic genes in primary human muscle cells. A postulated antiinflammatory role of CLA in myogenesis appears more complex, with an indication that CLA may have a negative effect on this process.