5 resultados para Murray–Darling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperate Australia sits between the heat engine of the tropics and the cold Southern Ocean, encompassing a range of rainfall regimes and falling under the influence of different climatic drivers. Despite this heterogeneity, broad-scale trends in climatic and environmental change are evident over the past 30 ka. During the early glacial period (∼30–22 ka) and the Last Glacial Maximum (∼22–18 ka), climate was relatively cool across the entire temperate zone and there was an expansion of grasslands and increased fluvial activity in regionally important Murray–Darling Basin. The temperate region at this time appears to be dominated by expanded sea ice in the Southern Ocean forcing a northerly shift in the position of the oceanic fronts and a concomitant influx of cold water along the southeast (including Tasmania) and southwest Australian coasts. The deglacial period (∼18–12 ka) was characterised by glacial recession and eventual disappearance resulting from an increase in temperature deduced from terrestrial records, while there is some evidence for climatic reversals (e.g. the Antarctic Cold Reversal) in high resolution marine sediment cores through this period. The high spatial density of Holocene terrestrial records reveals an overall expansion of sclerophyll woodland and rainforest taxa across the temperate region after ∼12 ka, presumably in response to increasing temperature, while hydrological records reveal spatially heterogeneous hydro-climatic trends. Patterns after ∼6 ka suggest higher frequency climatic variability that possibly reflects the onset of large scale climate variability caused by the El Niño/Southern Oscillation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arid systems are markedly different from non-arid systems. This distinctiveness extends to arid-social networks, by which we mean social networks which are influenced by the suite of factors driving arid and semi-arid regions. Neither the process of how aridity interacts with social structure, nor what happens as a result of this interaction, is adequately understood. This paper postulates three relative characteristics which make arid-social networks distinct: that they are tightly bound, are hierarchical in structure and, hence, prone to power abuses, and contain a relatively higher proportion of weak links, making them reactive to crisis. These ideas were modified from workshop discussions during 2006. Although they are neither tested nor presented as strong beliefs, they are based on the anecdotal observations of arid-system scientists with many years of experience. This paper does not test the ideas, but rather examines them in the context of five arid-social network case studies with the aim of hypotheses building. Our cases are networks related to pastoralism, Aboriginal outstations, the ‘Far West Coast Aboriginal Enterprise Network’ and natural resources in both the Lake-Eyre basin and the Murray–Darling catchment. Our cases highlight that (1) social networks do not have clear boundaries, and that how participants perceive their network boundaries may differ from what network data imply, (2) although network structures are important determinants of system behaviour, the role of participants as individuals is still pivotal, (3) and while in certain arid cases weak links are engaged in crisis, the exact structure of all weak links in terms of how they place participants in relation to other communities is what matters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incorporation of sown pastures as short-term rotations into the cropping systems of northern Australia has been slow. The inherent chemical fertility and physical stability of the predominant vertisol soils across the region enabled farmers to grow crops for decades without nitrogen fertiliser, and precluded the evolution of a crop–pasture rotation culture. However, as less fertile and less physically stable soils were cropped for extended periods, farmers began to use contemporary farming and sown pasture technologies to rebuild and maintain their soils. This has typically involved sowing long-term grass and grass–legume pastures on the more marginal cropping soils of the region. In partnership with the catchment management authority, the Queensland Murray–Darling Committee (QMDC) and Landcare, a pasture extension process using the LeyGrain™ package was implemented in 2006 within two Grain & Graze projects in the Maranoa-Balonne and Border Rivers catchments in southern inland Queensland. The specific objectives were to increase the area sown to high quality pasture and to gain production and environmental benefits (particularly groundcover) through improving the skills of producers in pasture species selection, their understanding and management of risk during pasture establishment, and in managing pastures and the feed base better. The catalyst for increasing pasture sowings was a QMDC subsidy scheme for increasing groundcover on old cropping land. In recognising a need to enhance pasture knowledge and skills to implement this scheme, the QMDC and Landcare producer groups sought the involvement of, and set specific targets for, the LeyGrain workshop process. This is a highly interactive action learning process that built on the existing knowledge and skills of the producers. Thirty-four workshops were held with more than 200 producers in 26 existing groups and with private agronomists. An evaluation process assessed the impact of the workshops on the learning and skill development by participants, their commitment to practice change, and their future intent to sow pastures. The results across both project catchments were highly correlated. There was strong agreement by producers (>90%) that the workshops had improved knowledge and skills regarding the adaptation of pasture species to soils and climates, enabling a better selection at the paddock level. Additional strong impacts were in changing the attitudes of producers to all aspects of pasture establishment, and the relative species composition of mixtures. Producers made a strong commitment to practice change, particularly in managing pasture as a specialist crop at establishment to minimise risk, and in the better selection and management of improved pasture species (particularly legumes and the use of fertiliser). Producers have made a commitment to increase pasture sowings by 80% in the next 5 years, with fourteen producers in one group alone having committed to sow an additional 4893 ha of pasture in 2007–08 under the QMDC subsidy scheme. The success of the project was attributed to the partnership between QMDC and Landcare groups who set individual workshop targets with LeyGrain presenters, the interactive engagement processes within the workshops themselves, and the follow-up provided by the LeyGrain team for on-farm activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Water and Global Change (WATCH) project evaluation of the terrestrial water cycle involves using land surface models and general hydrological models to assess hydrologically important variables including evaporation, soil moisture, and runoff. Such models require meteorological forcing data, and this paper describes the creation of the WATCH Forcing Data for 1958–2001 based on the 40-yr ECMWF Re-Analysis (ERA-40) and for 1901–57 based on reordered reanalysis data. It also discusses and analyses modelindependent estimates of reference crop evaporation. Global average annual cumulative reference crop evaporation was selected as a widely adopted measure of potential evapotranspiration. It exhibits no significant trend from 1979 to 2001 although there are significant long-term increases in global average vapor pressure deficit and concurrent significant decreases in global average net radiation and wind speed. The near-constant global average of annual reference crop evaporation in the late twentieth century masks significant decreases in some regions (e.g., the Murray–Darling basin) with significant increases in others.