986 resultados para Murine sepsis model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli is commonly involved in infections with a heavy bacterial burden. Piperacillin-tazobactam and carbapenems are among the recommended empirical treatments for health care-associated complicated intra-abdominal infections. In contrast to amoxicillin-clavulanate, both have reduced in vitro activity in the presence of high concentrations of extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing E. coli bacteria. Our goal was to compare the efficacy of these antimicrobials against different concentrations of two clinical E. coli strains, one an ESBL-producer and the other a non-ESBL-producer, in a murine sepsis model. An experimental sepsis model {~5.5 log10 CFU/g [low inoculum concentration (LI)] or ~7.5 log(10) CFU/g [high inoculum concentration (HI)]} using E. coli strains ATCC 25922 (non-ESBL producer) and Ec1062 (CTX-M-14 producer), which are susceptible to the three antimicrobials, was used. Amoxicillin-clavulanate (50/12.5 mg/kg given intramuscularly [i.m.]), piperacillin-tazobactam (25/3.125 mg/kg given intraperitoneally [i.p.]), and imipenem (30 mg/kg i.m.) were used. Piperacillin-tazobactam and imipenem reduced spleen ATCC 25922 strain concentrations (-2.53 and -2.14 log10 CFU/g [P < 0.05, respectively]) in the HI versus LI groups, while amoxicillin-clavulanate maintained its efficacy (-1.01 log10 CFU/g [no statistically significant difference]). Regarding the Ec1062 strain, the antimicrobials showed lower efficacy in the HI than in the LI groups: -0.73, -1.89, and -1.62 log10 CFU/g (P < 0.05, for piperacillin-tazobactam, imipenem, and amoxicillin-clavulanate, respectively, although imipenem and amoxicillin-clavulanate were more efficacious than piperacillin-tazobactam). An adapted imipenem treatment (based on the time for which the serum drug concentration remained above the MIC obtained with a HI of the ATCC 25922 strain) improved its efficacy to -1.67 log10 CFU/g (P < 0.05). These results suggest that amoxicillin-clavulanate could be an alternative to imipenem treatment of infections caused by ESBL- and non-ESBL-producing E. coli strains in patients with therapeutic failure with piperacillin-tazobactam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sepsis involves a systemic inflammatory response of multiple endogenous mediators, resulting in many of the injurious and sometimes fatal physiological symptoms of the disease. This systemic activation leads to a compromised vascular response and endothelial dysfunction. Purine nucleotides interact with purinoceptors and initiate a variety of physiological processes that play an important role in maintaining cardiovascular function. The purpose of the present study was to investigate the effects of ATP on vascular function in a lipopolysaccharide (LPS) model of sepsis. LPS induced a significant increase in aortic superoxide production 16 h after injection. Addition of ATP to the organ bath incubation solution reduced superoxide production by the aortas of endotoxemic animals. Reactive Blue, an antagonist of the P2Y receptor, blocked the effect of ATP on superoxide production, and the nonselective P2Y agonist MeSATP inhibited superoxide production. Nitric oxide synthase (NOS) inhibition by L-NAME blocked vascular relaxation and reduced superoxide production in LPS-treated animals. In the presence of L-NAME there was no ATP effect on superoxide production. A vascular reactivity study showed that ATP increased maximal relaxation in LPS-treated animals compared to controls. The presence of ATP induced increases in Akt and endothelial NOS phosphorylated proteins in the aorta of septic animals. ATP reduces superoxide release resulting in an improved vasorelaxant response. Sepsis may uncouple NOS to produce superoxide. We showed that ATP through Akt pathway phosphorylated endothelial NOS and “re-couples” NOS function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficacy of flucytosine (5-FC) and fluconazole (FLU) association in the treatment of a murine experimental model of cryptococcosis, was evaluated. Seven groups of 10 Balb C mice each, were intraperitoneally inoculated with 10(7) cells of Cryptococcus neoformans. Six groups were allocated to receive 5-FC (300 mg/kg) and FLU (16 mg/ kg), either combined and individually, by daily gavage beginning 5 days after the infection, for 2 and 4 weeks. One group received distilled water and was used as control. The evaluation of treatments was based on: survival time; macroscopic examination of brain, lungs, liver and spleen at autopsy; presence of capsulated yeasts in microscopic examination of wet preparations of these organs and cultures of brain homogenate. 5-FC and FLU, individually or combined, significantly prolonged the survival time of the treated animals with respect to the control group (p<0.01). Animals treated for 4 weeks survived significantly longer than those treated for 2 weeks (p<0.01). No significant differences between the animals treated with 5-FC and FLU combined or separately were observed in the survival time and morphological parameters. The association of 5-FC and FLU does not seem to be more effective than 5-FC or FLU alone, in the treatment of this experimental model of cryptococcosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To establish a murine experimental model of bile duct obstruction that would enable controlled observations of the acute and subacute phases of cholestasis. METHODOLOGY: Adult male isogenic BALB/c mice underwent a bile duct ligation (22 animals) or a sham operation (10 animals). Fifteen days after surgery, or immediately after the animal's death, macroscopic findings were noted and histological study of the liver, biliary tree, and pancreas was performed (hematoxylin-eosin and Masson trichromic staining). RESULTS: Beginning 24 hours after surgery, all animals from the bile duct ligation group presented progressive generalized malaise. All animals presented jaundice in the parietal and visceral peritoneum, turgid and enlarged liver, and accentuated dilatation of gallbladder and common bile duct. Microscopic findings included marked dilatation and proliferation of bile ducts with accentuated collagen deposits, frequent areas of ischemic necrosis, hepatic microabscesses, and purulent cholangitis. Animals from the sham operation group presented no alterations. CONCLUSION: We established a murine experimental model of induced cholestasis, which made it possible to study acute and subacute tissue lesions. Our data suggests that in cholestasis, hepatic functional ischemia plays an important role in inducing hepatic lesions, and it also suggests that the infectious process is an important factor in morbidity and mortality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral replication, histopathological and ultrastructural changes were observed for a period of nine days in the small intestine of suckling mice infected with a simian rotavirus (SA11). Samples taken from duodenum, jejunun and ileum were prepared for light microscopy, transmission and scanning electron microscopy analysis. Histopathologic effect could be detected within 8 hr post-infection, when only a few altered cells were observed. Damage was extensive after 16 hr post-infection, showing swollen enterocytes and reduced and irregularly oriented microvilli at intestinal villi tips. Virus particles were detected at 16 and 48 hr post-infection, budding from the viroplasm into the rough endoplasmic reticulum cisternae in ileum enterocytes. Clear evidence of viral replication, observed by electron microscopy was not described before in heterologous murine models. Regeneration of the intestinal villi began at the third day post-infection. Despite some differences observed in clinical symptoms and microscopic analysis of homologous and heterologous rotavirus infections, we concluded that mechanisms of heterologous rotavirus infection in mice follow similar patterns to those observed in the homologous models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laparoscopic surgery is associated with reduced surgical trauma, and less acute phase response, as compared with open surgery. Cytokines are important regulators of the biological response to surgical and anesthetic stress. The aim of this study was to determine if CO2 pneumoperitoneum would change cytokine expression, gas parameters and leukocyte count in septic rats. Methods: Wistar rats were randomly assigned to five groups: control (anesthesia only), laparotomy, CO2 pneumoperitoneum, cecum ligation and puncture by laparotomy, and laparoscopic cecum ligation and puncture. After 30 min of the procedures, arterial blood samples were obtained to determine leukocytes subpopulations by hemocytometer. TNFα, IL-1β, IL-6 were determined in intraperitoneal fluid (by ELISA). Gas parameters were measured on arterial blood, intraperitoneal and subperitoneal exsudates. Results: Peritoneal TNFα, IL-1β and IL-6 concentrations were lower in pneumoperitoneum rats than in all other groups (p<0.05). TNFα, IL-1β and IL-6 expression was lower in the laparoscopic than in laparotomic sepsis (p<0.05). Rats from laparoscopic cecum ligation and puncture group developed significant hypercarbic acidosis in blood and subperitoneal fluid when compared to open procedure group. Total white blood cells and lymphocytes were significantly lower in laparoscopic cecum ligation and puncture rats than in the laparotomic (p<0.01). Nevertheless, the laparotomic cecum ligation rats had a significant increase in blood neutrophils and eosinophils when compared with controls (p<0.05). Conclusions: This study demonstrates that the CO2 pneumoperitoneum reduced the inflammatory response in an animal model of peritonitis with respect to intraperitoneal cytokines, white blood cell count and clinical correlates of sepsis. The pneumoperitoneum produced hypercarbic acidosis in septic animals

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chloroquine, due to its basic properties, has been shown to prevent the release of iron from holotransferrin, thereby interfering with normal iron metabolism in a variety of cell types. We have studied the effects of chloroquine on the evolution of experimental paracoccidioidomycosis by evaluating the viable fungal recovery from lung, liver and spleen from infected mice and H2O2, NO production, tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-6, IL-10 levels and transferrin receptor (TfR) expression from uninfected and infected peritoneal macrophages. Chloroquine caused a significant decrease in the viable fungal recovery from all organs tested, during all periods of evaluation. Peritoneal macrophages from chloroquine-treated infected mice showed higher H2O2 production and TfR expression, and decreased levels of NO, endogenous and stimulated-TNF-alpha, IL-6 and IL-10 during the three evaluated periods. However, despite its suppressor effects on the macrophage function, the chloroquine therapeutic effect upon murine paracoccidioidomycosis was probably due to its effect on iron metabolism, blocking iron uptake by cells, and consequently restricting iron to fungus growth and survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current chemotherapeutic treatment of alveolar echinococcosis (AE) in humans is based on albendazole and/or mebendazole. However, the costs of treatment, life-long consumption of drugs, parasitostatic rather than parasiticidal activity of chemotherapy, and high recurrence rates after treatment interruption warrant more efficient treatment options. Experimental treatment of mice infected with Echinococcus multilocularis metacestodes with fenbendazole revealed similar efficacy to albendazole. Inspection of parasite tissue from infected and benzimidazole-treated mice by transmission electron microscopy (TEM) demonstrated drug-induced alterations within the germinal layer of the parasites, and most notably an almost complete absence of microtriches. On the other hand, upon in vitro exposure of metacestodes to benzimidazoles, no phosphoglucose isomerase activity could be detected in medium supernatants during treatment with any of these drugs, indicating that in vitro treatment did not severely affect the viability of metacestode tissue. Corresponding TEM analysis also revealed a dramatic shortening/retraction of microtriches as a hallmark of benzimidazole action, and as a consequence separation of the acellular laminated layer from the cellular germinal layer. Since TEM did not reveal any microtubule-based structures within Echinococcus microtriches, this effect cannot be explained by the previously described mechanism of action of benzimidazoles targeting β-tubulin, thus benzimidazoles must interact with additional targets that have not been yet identified. In addition, these results indicate the potential usefulness of fenbendazole for the chemotherapy of AE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laparoscopic surgery is associated with reduced surgical trauma, and less acute phase response, as compared with open surgery. Cytokines are important regulators of the biological response to surgical and anesthetic stress. The aim of this study was to determine if CO2 pneumoperitoneum would change cytokine expression, gas parameters and leukocyte count in septic rats. Methods: Wistar rats were randomly assigned to five groups: control (anesthesia only), laparotomy, CO2 pneumoperitoneum, cecum ligation and puncture by laparotomy, and laparoscopic cecum ligation and puncture. After 30 min of the procedures, arterial blood samples were obtained to determine leukocytes subpopulations by hemocytometer. TNFα, IL-1β, IL-6 were determined in intraperitoneal fluid (by ELISA). Gas parameters were measured on arterial blood, intraperitoneal and subperitoneal exsudates. Results: Peritoneal TNFα, IL-1β and IL-6 concentrations were lower in pneumoperitoneum rats than in all other groups (p<0.05). TNFα, IL-1β and IL-6 expression was lower in the laparoscopic than in laparotomic sepsis (p<0.05). Rats from laparoscopic cecum ligation and puncture group developed significant hypercarbic acidosis in blood and subperitoneal fluid when compared to open procedure group. Total white blood cells and lymphocytes were significantly lower in laparoscopic cecum ligation and puncture rats than in the laparotomic (p<0.01). Nevertheless, the laparotomic cecum ligation rats had a significant increase in blood neutrophils and eosinophils when compared with controls (p<0.05). Conclusions: This study demonstrates that the CO2 pneumoperitoneum reduced the inflammatory response in an animal model of peritonitis with respect to intraperitoneal cytokines, white blood cell count and clinical correlates of sepsis. The pneumoperitoneum produced hypercarbic acidosis in septic animals

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laparoscopic surgery is associated with reduced surgical trauma, and less acute phase response, as compared with open surgery. Cytokines are important regulators of the biological response to surgical and anesthetic stress. The aim of this study was to determine if CO2 pneumoperitoneum would change cytokine expression, gas parameters and leukocyte count in septic rats. Methods: Wistar rats were randomly assigned to five groups: control (anesthesia only), laparotomy, CO2 pneumoperitoneum, cecum ligation and puncture by laparotomy, and laparoscopic cecum ligation and puncture. After 30 min of the procedures, arterial blood samples were obtained to determine leukocytes subpopulations by hemocytometer. TNFα, IL-1β, IL-6 were determined in intraperitoneal fluid (by ELISA). Gas parameters were measured on arterial blood, intraperitoneal and subperitoneal exsudates. Results: Peritoneal TNFα, IL-1β and IL-6 concentrations were lower in pneumoperitoneum rats than in all other groups (p<0.05). TNFα, IL-1β and IL-6 expression was lower in the laparoscopic than in laparotomic sepsis (p<0.05). Rats from laparoscopic cecum ligation and puncture group developed significant hypercarbic acidosis in blood and subperitoneal fluid when compared to open procedure group. Total white blood cells and lymphocytes were significantly lower in laparoscopic cecum ligation and puncture rats than in the laparotomic (p<0.01). Nevertheless, the laparotomic cecum ligation rats had a significant increase in blood neutrophils and eosinophils when compared with controls (p<0.05). Conclusions: This study demonstrates that the CO2 pneumoperitoneum reduced the inflammatory response in an animal model of peritonitis with respect to intraperitoneal cytokines, white blood cell count and clinical correlates of sepsis. The pneumoperitoneum produced hypercarbic acidosis in septic animals

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fitness and virulence costs associated with the clinical acquisition of colistin resistance by Acinetobacter baumannii were evaluated. The growth of strain CR17 (colistin resistant) was less than that of strain CS01 (colistin susceptible) when the strains were grown in competition (72-h competition index, 0.008). In a murine sepsis model, CS01 and CR17 reached spleen concentrations when coinfecting of 9.31 and 6.97 log10 CFU/g, respectively, with an in vivo competition index of 0.016. Moreover, CS01 was more virulent than CR17 with respect to mortality and time to death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to investigate the pattern of inflammatory response induced by Lagochilascaris minor in murine experimental model. For this purpose 115 mice were given 1000-3000 L. minor infective eggs "per os" and 51 uninfected mice were considered as controls. Four hours post-inoculation (PI), 3rd stage larvae were seen passing through the mucosa of terminal ends of small intestine. Six hours PI larvae were observed as an embolus inside the portal vein and also migrating through the liver parenchyma. During the first 24 h larvae-containing eggs of L. minor were observed in the lumen of intestinal tract. Two days PI larvae were seen migrating through lung parenchyma associated with an initial neutrophilic perivasculitis. From the 13th day of this experimental study, L. minor larvae were found mainly in skeletal muscles, in the center of granulomas. Concentric fibrosis with mixed inflammatory infiltrate involved the larvae after the 47th day PI, persistently. This experimental murine study with L. minor indicated that the 3rd stage larvae penetrated via ileum-cecal mucosa reaching the liver and probably other tissues through the hematogenic via. Throughout its pathway the larvae induced a granulomatous reaction, with abundant polimorphonuclear cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The aim of our study was to evaluate the role of cell-membrane expressed TLRs and the signaling molecule MyD88 in a murine model of OA induced by knee menisectomy (surgical partial removal of the medial meniscus [MNX]). METHODS: OA was induced in 8-10weeks old C57Bl/6 wild-type (WT) female (n=7) mice and in knockout (KO) TLR-1 (n=7), -2 (n=8), -4 (n=9) -6 (n=5), MyD88 (n=8) mice by medial menisectomy, using the sham-operated contralateral knee as a control. Cartilage destruction and synovial inflammation were evaluated by knee joint histology using the OARSI scoring method. Apoptotic chondrocytes and cartilage metabolism (collagen II synthesis and MMP-mediated aggrecan degradation) were analyzed using immunohistochemistry. RESULTS: Operated knees exhibited OA features at 8weeks post-surgery compared to sham-operated ones. In menisectomized TLR-1, -2, -4, and -6 deficient mice, cartilage lesions, synovial inflammation and cartilage metabolism were similar to that in operated WT mice. Accordingly, using the same approach, we found no significant protection in MyD88-deficient mice in terms of OA progression as compared to WT littermates. CONCLUSIONS: Deficiency of TLRs or their signalling molecule MyD88 did not impact on the severity of experimental OA. Our results demonstrate that MyD88-dependent TLRs are not involved in this murine OA model. Moreover, the dispensable role of MyD88, which is also an adaptor for IL-1 receptor signaling, suggests that IL-1 is not a key mediator in the development of OA. This latter hypothesis is strengthened by the lack of efficiency of IL-1β antagonist in the treatment of OA.