941 resultados para Murine model
Resumo:
BACKGROUND Tissue engineering of patient-specific adipose tissue has the potential to revolutionize reconstructive surgery. Numerous models have been described for the production of adipose tissue with success in the short term, but little has been reported on the stability of this tissue-engineered fat beyond 4 months. METHODS A murine model of de novo adipogenesis producing a potentially transplantable adipose tissue flap within 4 to 6 weeks was developed in the authors' laboratory. In this study, the authors assess the ability of three-chamber (44-μl volume) configurations shown to be adipogenic in previous short-term studies (autograft, n = 8; open, n = 6; fat flap, n = 11) to maintain their tissue volume for up to 12 months in vivo, to determine the most adipogenic configuration in the long term. RESULTS Those chambers having the most contact with existing vascularized adipose tissue (open and fat flap groups) showed increased mean adipose tissue percentage (77 ± 5.6 percent and 81 ± 6.9 percent, respectively; p < 0.0007) and volume (12 ± 6.8 μl and 30 ± 14 μl, respectively; p < 0.025) when compared with short-term controls and greater adipose tissue volume than the autograft (sealed) chamber group (4.9 ± 5.8 μl; p = 0.0001) at 1 year. Inclusion of a vascularized fat flap within the chamber produced the best results, with new fat completely filling the chamber by 1 year. CONCLUSIONS These findings demonstrate that fat produced by tissue engineering is capable of maintaining its volume when the appropriate microenvironment is provided. This has important implications for the application of tissue-engineering techniques in humans.
Resumo:
Genital tract carriage of group B streptococcus (GBS) is prevalent among adult women; however, the dynamics of chronic GBS genital tract carriage, including how GBS persists in this immunologically active host niche long term, are not well defined. To our knowledge, in this study, we report the first animal model of chronic GBS genital tract colonization using female mice synchronized into estrus by delivery of 17β-estradiol prior to intravaginal challenge with wild-type GBS 874391. Cervicovaginal swabs, which were used to measure bacterial persistence, showed that GBS colonized the vaginal mucosa of mice at high numbers (106–107 CFU/swab) for at least 90 d. Cellular and histological analyses showed that chronic GBS colonization of the murine genital tract caused significant lymphocyte and PMN cell infiltrates, which were localized to the vaginal mucosal surface. Long-term colonization was independent of regular hormone cycling. Immunological analyses of 23 soluble proteins related to chemotaxis and inflammation showed that the host response to GBS in the genital tract comprised markers of innate immune activation including cytokines such as GM-CSF and TNF-α. A nonhemolytic isogenic mutant of GBS 874391, Δcyle9, was impaired for colonization and was associated with amplified local PMN responses. Induction of DNA neutrophil extracellular traps, which was observed in GBS-infected human PMNs in vitro in a hemolysin-dependent manner, appeared to be part of this response. Overall, this study defines key infection dynamics in a novel murine model of chronic GBS genital tract colonization and establishes previously unknown cellular and soluble defense responses to GBS in the female genital tract.
Resumo:
Curcumin has gained immense importance for its vast therapeutic and prophylactic applications. Contrary to this, our study reveals that it regulates the defense pathways of Salmonella enterica serovar Typhimurium ( S. Typhimurium) to enhance its pathogenicity. In a murine model of typhoid fever, we observed higher bacterial load in Peyer's,patches, mesenteric lymph node, spleen and liver, when infected with curcumin-treated Salmonella. Curcumin increased the resistance of S. Typhimurium against antimicrobial agents like antimicrobial peptides, reactive oxygen and nitrogen species. This increased tolerance might be attributed to the up-regulation of genes involved in resistance against antimicrobial peptides - pmrD and pmrHFIJKLM and genes with antioxidant function - mntH, sodA and sitA. We implicate that iron chelation property of curcumin have a role in regulating mntH and sitA. Interestingly, we see that the curcumin-mediated modulation of pmr genes is through the PhoPQ regulatory system. Curcumin downregulates SPI1 genes, required for entry into epithelial cells and upregulates SPI2 genes required to intracellular survival. Since it is known that the SPI1 and SPI2 system can be regulated by the PhoPQ system, this common regulator could explain curcumin's mode of action. This data urges us to rethink the indiscriminate use of curcumin especially during Salmonella outbreaks.
Resumo:
Background: Genetic variants of NOD2 are linked to inflammatory bowel disease (IBD) etiology. Results: DSS model of colitis in wild-type and inducible nitric-oxide synthase (iNOS) null mice revealed that NOD2-iNOS/NO-responsive microRNA-146a targets NUMB gene facilitating Sonic hedgehog (SHH) signaling. Conclusion: miR-146a-mediated NOD2-SHH signaling regulates gut inflammation. Significance: Identification of novel regulators of IBD provides new insights into pathophysiology and development of new therapy concepts. Inflammatory bowel disease (IBD) is a debilitating chronic inflammatory disorder of the intestine. The interactions between enteric bacteria and genetic susceptibilities are major contributors of IBD etiology. Although genetic variants with loss or gain of NOD2 functions have been linked to IBD susceptibility, the mechanisms coordinating NOD2 downstream signaling, especially in macrophages, during IBD pathogenesis are not precisely identified. Here, studies utilizing the murine dextran sodium sulfate model of colitis revealed the crucial roles for inducible nitric-oxide synthase (iNOS) in regulating pathophysiology of IBDs. Importantly, stimulation of NOD2 failed to activate Sonic hedgehog (SHH) signaling in iNOS null macrophages, implicating NO mediated cross-talk between NOD2 and SHH signaling. NOD2 signaling up-regulated the expression of a NO-responsive microRNA, miR-146a, that targeted NUMB gene and alleviated the suppression of SHH signaling. In vivo and ex vivo studies confirmed the important roles for miR-146a in amplifying inflammatory responses. Collectively, we have identified new roles for miR-146a that established novel cross-talk between NOD2-SHH signaling during gut inflammation. Potential implications of these observations in therapeutics could increase the possibility of defining and developing better regimes to treat IBD pathophysiology.
Resumo:
Endothelial cell association with vascular basement membranes is complex and plays a critical role in regulation of cell adhesion and proliferation. The interaction between the membrane-associated 67-kd receptor (67LR) and the basement membrane protein laminin has been studied in several cell systems where it was shown to be crucial for adhesion and attachment during angiogenesis. As angiogenesis in the pathological setting of proliferative retinopathy is a major cause of blindness in the Western world we examined the expression of 67LR in a murine model of hyperoxia-induced retinopathy that exhibits retinal neovascularization. Mice exposed to hyperoxia for 5 days starting at postnatal day 7 (P7) and returned to room air (at P12) showed closure of the central retinal vasculature. In response to the ensuing retinal ischemia, there was consistent preretinal neovascularization starting around P17, which persisted until P21, after which the new vessels regressed. Immunohistochemistry was performed on these retinas using an antibody specific for 67LR. At P12, immunoreactivity for 67LR was absent in the retina, but by P17 it was observed in preretinal proliferating vessels and also within the adjacent intraretinal vasculature. Intraretinal 67LR immunoreactivity diminished beyond P17 until by P21 immunoreactivity was almost completely absent, although it persisted in the preretinal vasculature. Control P17 mice (not exposed to hyperoxia) failed to demonstrate any 67LR immunoreactivity in their retinas. Parallel in situ hybridization studies demonstrated 67LR gene expression in the retinal ganglion cells of control and hyperoxia-exposed mice. In addition, the neovascular intra- and preretinal vessels of hyperoxia-treated P17 and P21 mice labeled strongly for 67LR mRNA. This study has characterized 67LR immunolocalization and gene expression in a murine model of ischemic retinopathy. Results suggest that, although the 67LR gene is expressed at high levels in the retinal ganglion cells, the mature receptor protein is preferentially localized to the proliferating retinal vasculature and is almost completely absent from quiescent vessels. The differential expression of 67LR between proliferating and quiescent retinal vessels suggests that this laminin receptor is an important and novel target for future chemotherapeutic intervention during proliferative vasculopathies.
Resumo:
We introduced a targeted single base deletion at codon 307 of the rds-peripherin gene in mice, similar mutations being known to cause autosomal dominant retinitis pigmentosa (RP) in man. Histopathological and electroretinographic analysis indicate that the retinopathy in mice homozygous for the codon 307 mutation appears more rapid than that in the naturally occurring null mutant, the rds(-/-) mouse, suggesting that the rds-307 mutation displays a dominant negative phenotype in combination with that due to haplosufficiency. RP is the most prevalent cause of registered visual handicap in those of working age in developed countries, the 50 or so mutations so far identified within the RDS-peripherin gene accounting for up to 10% of dominant cases of the disease. Given the sequence homologies that exist between the murine rds-peripherin and the human RDS-peripherin gene, this disease model, the first to be generated for peripherin-based RP using gene targeting techniques, should in principle be of value in the work-up in mice of therapeutics capable of targeting transcripts derived from the human gene.
Resumo:
Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population in the United States. The vision-threatening processes of neuroglial and vascular dysfunction in DR occur in concert, driven by hyperglycemia and propelled by a pathway of inflammation, ischemia, vasodegeneration, and breakdown of the blood retinal barrier. Currently, no therapies exist for normalizing the vasculature in DR. Here we show that a single intravitreal dose of adeno-associated virus serotype 2 encoding a more stable, soluble, and potent form of angiopoietin 1 (AAV2.COMP-Ang1) can ameliorate the structural and functional hallmarks of DR in Ins2Akita mice, with sustained effects observed through six months. In early DR, AAV2.COMP-Ang1 restored leukocyte-endothelial interaction, retinal oxygenation, vascular density, vascular marker expression, vessel permeability, retinal thickness, inner retinal cellularity, and retinal neurophysiological response to levels comparable to non-diabetic controls. In late DR, AAV2.COMP-Ang1 enhanced the therapeutic benefit of intravitreally-delivered endothelial colony-forming cells by promoting their integration into the vasculature and thereby stemming further visual decline. AAV2.COMP-Ang1 single-dose gene therapy can prevent neurovascular pathology, support vascular regeneration, and stabilize vision in DR.
Resumo:
OBJECTIVE: Hereditary hemochromatosis (HH) is a disease caused by mutations in the Hfe gene characterised by systemic iron overload and associated with an increased prevalence of osteoarthritis (OA) but the role of iron overload in the development of OA is still undefined. To further understand the molecular mechanisms involved we have used a murine model of HH and studied the progression of experimental OA under mechanical stress. DESIGN: OA was surgically induced in the knee joints of 10-week-old C57BL6 (wild-type) mice and Hfe-KO mice. OA progression was assessed using histology, micro CT, gene expression and immunohistochemistry at 8 weeks after surgery. RESULTS: Hfe-KO mice showed a systemic iron overload and an increased iron accumulation in the knee synovial membrane following surgery. The histological OA score was significantly higher in the Hfe-KO mice at 8 weeks after surgery. Micro CT study of the proximal tibia revealed increased subchondral bone volume and increased trabecular thickness. Gene expression and immunohistochemical analysis showed a significant increase in the expression of matrix metallopeptidase 3 (MMP-3) in the joints of Hfe-KO mice compared with control mice at 8 weeks after surgery. CONCLUSIONS: HH was associated with an accelerated development of OA in mice. Our findings suggest that synovial iron overload has a definite role in the progression of HH-related OA