921 resultados para Multivariate wavelet analysis
Resumo:
Prices of U.S. Treasury securities vary over time and across maturities. When the market in Treasurys is sufficiently complete and frictionless, these prices may be modeled by a function time and maturity. A cross-section of this function for time held fixed is called the yield curve; the aggregate of these sections is the evolution of the yield curve. This dissertation studies aspects of this evolution. ^ There are two complementary approaches to the study of yield curve evolution here. The first is principal components analysis; the second is wavelet analysis. In both approaches both the time and maturity variables are discretized. In principal components analysis the vectors of yield curve shifts are viewed as observations of a multivariate normal distribution. The resulting covariance matrix is diagonalized; the resulting eigenvalues and eigenvectors (the principal components) are used to draw inferences about the yield curve evolution. ^ In wavelet analysis, the vectors of shifts are resolved into hierarchies of localized fundamental shifts (wavelets) that leave specified global properties invariant (average change and duration change). The hierarchies relate to the degree of localization with movements restricted to a single maturity at the base and general movements at the apex. Second generation wavelet techniques allow better adaptation of the model to economic observables. Statistically, the wavelet approach is inherently nonparametric while the wavelets themselves are better adapted to describing a complete market. ^ Principal components analysis provides information on the dimension of the yield curve process. While there is no clear demarkation between operative factors and noise, the top six principal components pick up 99% of total interest rate variation 95% of the time. An economically justified basis of this process is hard to find; for example a simple linear model will not suffice for the first principal component and the shape of this component is nonstationary. ^ Wavelet analysis works more directly with yield curve observations than principal components analysis. In fact the complete process from bond data to multiresolution is presented, including the dedicated Perl programs and the details of the portfolio metrics and specially adapted wavelet construction. The result is more robust statistics which provide balance to the more fragile principal components analysis. ^
Resumo:
Since 2000, the southwestern Brazilian Amazon has undergone a rapid transformation from natural vegetation and pastures to row-crop agricultural with the potential to affect regional biogeochemistry. The goals of this research are to assess wavelet algorithms applied to MODIS time series to determine expansion of row-crops and intensification of the number of crops grown. MODIS provides data from February 2000 to present, a period of agricultural expansion and intensification in the southwestern Brazilian Amazon. We have selected a study area near Comodoro, Mato Grosso because of the rapid growth of row-crop agriculture and availability of ground truth data of agricultural land-use history. We used a 90% power wavelet transform to create a wavelet-smoothed time series for five years of MODIS EVI data. From this wavelet-smoothed time series we determine characteristic phenology of single and double crops. We estimate that over 3200 km(2) were converted from native vegetation and pasture to row-crop agriculture from 2000 to 2005 in our study area encompassing 40,000 km(2). We observe an increase of 2000 km(2) of agricultural intensification, where areas of single crops were converted to double crops during the study period. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
State of Sao Paulo Research Foundation (FAPESP)
Resumo:
This paper studies the human DNA in the perspective of signal processing. Six wavelets are tested for analyzing the information content of the human DNA. By adopting real Shannon wavelet several fundamental properties of the code are revealed. A quantitative comparison of the chromosomes and visualization through multidimensional and dendograms is developed.
Resumo:
Dissertação para obtenção do Grau de Doutor em Alterações Climáticas e Políticas de Desenvolvimento Sustentável
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2009
Resumo:
v.39:no.3(1978)
Resumo:
This paper deals with the problem of spatial data mapping. A new method based on wavelet interpolation and geostatistical prediction (kriging) is proposed. The method - wavelet analysis residual kriging (WARK) - is developed in order to assess the problems rising for highly variable data in presence of spatial trends. In these cases stationary prediction models have very limited application. Wavelet analysis is used to model large-scale structures and kriging of the remaining residuals focuses on small-scale peculiarities. WARK is able to model spatial pattern which features multiscale structure. In the present work WARK is applied to the rainfall data and the results of validation are compared with the ones obtained from neural network residual kriging (NNRK). NNRK is also a residual-based method, which uses artificial neural network to model large-scale non-linear trends. The comparison of the results demonstrates the high quality performance of WARK in predicting hot spots, reproducing global statistical characteristics of the distribution and spatial correlation structure.
Resumo:
The objective of this thesis is to study wavelets and their role in turbulence applications. Under scrutiny in the thesis is the intermittency in turbulence models. Wavelets are used as a mathematical tool to study the intermittent activities that turbulence models produce. The first section generally introduces wavelets and wavelet transforms as a mathematical tool. Moreover, the basic properties of turbulence are discussed and classical methods for modeling turbulent flows are explained. Wavelets are implemented to model the turbulence as well as to analyze turbulent signals. The model studied here is the GOY (Gledzer 1973, Ohkitani & Yamada 1989) shell model of turbulence, which is a popular model for explaining intermittency based on the cascade of kinetic energy. The goal is to introduce better quantification method for intermittency obtained in a shell model. Wavelets are localized in both space (time) and scale, therefore, they are suitable candidates for the study of singular bursts, that interrupt the calm periods of an energy flow through various scales. The study concerns two questions, namely the frequency of the occurrence as well as the intensity of the singular bursts at various Reynolds numbers. The results gave an insight that singularities become more local as Reynolds number increases. The singularities become more local also when the shell number is increased at certain Reynolds number. The study revealed that the singular bursts are more frequent at Re ~ 107 than other cases with lower Re. The intermittency of bursts for the cases with Re ~ 106 and Re ~ 105 was similar, but for the case with Re ~ 104 bursts occured after long waiting time in a different fashion so that it could not be scaled with higher Re.
Resumo:
ABSTRACT This study aimed to develop a methodology based on multivariate statistical analysis of principal components and cluster analysis, in order to identify the most representative variables in studies of minimum streamflow regionalization, and to optimize the identification of the hydrologically homogeneous regions for the Doce river basin. Ten variables were used, referring to the river basin climatic and morphometric characteristics. These variables were individualized for each of the 61 gauging stations. Three dependent variables that are indicative of minimum streamflow (Q7,10, Q90 and Q95). And seven independent variables that concern to climatic and morphometric characteristics of the basin (total annual rainfall – Pa; total semiannual rainfall of the dry and of the rainy season – Pss and Psc; watershed drainage area – Ad; length of the main river – Lp; total length of the rivers – Lt; and average watershed slope – SL). The results of the principal component analysis pointed out that the variable SL was the least representative for the study, and so it was discarded. The most representative independent variables were Ad and Psc. The best divisions of hydrologically homogeneous regions for the three studied flow characteristics were obtained using the Mahalanobis similarity matrix and the complete linkage clustering method. The cluster analysis enabled the identification of four hydrologically homogeneous regions in the Doce river basin.
Resumo:
The contents of total phenolic compounds (TPC), total flavonoids (TF), and ascorbic acid (AA) of 18 frozen fruit pulps and their scavenging capacities against peroxyl radical (ROO), hydrogen peroxide (H2O2), and hydroxyl radical (OH) were determined. Principal Component Analysis (PCA) showed that TPC (total phenolic compounds) and AA (ascorbic acid) presented positive correlation with the scavenging capacity against ROO, and TF (total flavonoids) showed positive correlation with the scavenging capacity against OH and ROO However, the scavenging capacity against H2O2 presented low correlation with TF (total flavonoids), TPC (total phenolic compounds), and AA (ascorbic acid). The Hierarchical Cluster Analysis (HCA) allowed the classification of the fruit pulps into three groups: one group was formed by the açai pulp with high TF, total flavonoids, content (134.02 mg CE/100 g pulp) and the highest scavenging capacity against ROO, OH and H2O2; the second group was formed by the acerola pulp with high TPC, total phenolic compounds, (658.40 mg GAE/100 g pulp) and AA , ascorbic acid, (506.27 mg/100 g pulp) contents; and the third group was formed by pineapple, cacao, caja, cashew-apple, coconut, cupuaçu, guava, orange, lemon, mango, passion fruit, watermelon, pitanga, tamarind, tangerine, and umbu pulps, which could not be separated considering only the contents of bioactive compounds and the scavenging properties.
Resumo:
Baking and 2-g mixograph analyses were performed for 55 cultivars (19 spring and 36 winter wheat) from various quality classes from the 2002 harvest in Poland. An instrumented 2-g direct-drive mixograph was used to study the mixing characteristics of the wheat cultivars. A number of parameters were extracted automatically from each mixograph trace and correlated with baking volume and flour quality parameters (protein content and high molecular weight glutenin subunit [HMW-GS] composition by SDS-PAGE) using multiple linear regression statistical analysis. Principal component analysis of the mixograph data discriminated between four flour quality classes, and predictions of baking volume were obtained using several selected mixograph parameters, chosen using a best subsets regression routine, giving R-2 values of 0.862-0.866. In particular, three new spring wheat strains (CHD 502a-c) recently registered in Poland were highly discriminated and predicted to give high baking volume on the basis of two mixograph parameters: peak bandwidth and 10-min bandwidth.
Resumo:
Synoptic climatology relates the atmospheric circulation with the surface environment. The aim of this study is to examine the variability of the surface meteorological patterns, which are developing under different synoptic scale categories over a suburban area with complex topography. Multivariate Data Analysis techniques were performed to a data set with surface meteorological elements. Three principal components related to the thermodynamic status of the surface environment and the two components of the wind speed were found. The variability of the surface flows was related with atmospheric circulation categories by applying Correspondence Analysis. Similar surface thermodynamic fields develop under cyclonic categories, which are contrasted with the anti-cyclonic category. A strong, steady wind flow characterized by high shear values develops under the cyclonic Closed Low and the anticyclonic H–L categories, in contrast to the variable weak flow under the anticyclonic Open Anticyclone category.