931 resultados para Multivariate geostatistics
Resumo:
This paper describes a geostatistical method, known as factorial kriging analysis, which is well suited for analyzing multivariate spatial information. The method involves multivariate variogram modeling, principal component analysis, and cokriging. It uses several separate correlation structures, each corresponding to a specific spatial scale, and yields a set of regionalized factors summarizing the main features of the data for each spatial scale. This method is applied to an area of high manganese-ore mining activity in Amapa State, North Brazil. Two scales of spatial variation (0.33 and 2.0 km) are identified and interpreted. The results indicate that, for the short-range structure, manganese, arsenic, iron, and cadmium are associated with human activities due to the mining work, while for the long-range structure, the high aluminum, selenium, copper, and lead concentrations, seem to be related to the natural environment. At each scale, the correlation structure is analyzed, and regionalized factors are estimated by cokriging and then mapped.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper the influence of a secondary variable as a function of the correlation with the primary variable for collocated cokriging is examined. For this study five exhaustive data sets were generated in computer, from which samples with 60 and 104 data points were drawn using the stratified random sampling method. These exhaustive data sets were generated departing from a pair of primary and secondary variables showing a good correlation. Then successive sets were generated by adding an amount of white noise in such a way that the correlation gets poorer. Using these samples, it was possible to find out how primary and secondary information is used to estimate an unsampled location according to the correlation level.
Resumo:
Minimum/maximum autocorrelation factor (MAF) is a suitable algorithm for orthogonalization of a vector random field. Orthogonalization avoids the use of multivariate geostatistics during joint stochastic modeling of geological attributes. This manuscript demonstrates in a practical way that computation of MAF is the same as discriminant analysis of the nested structures. Mathematica software is used to illustrate MAF calculations from a linear model of coregionalization (LMC) model. The limitation of two nested structures in the LMC for MAF is also discussed and linked to the effects of anisotropy and support. The analysis elucidates the matrix properties behind the approach and clarifies relationships that may be useful for model-based approaches. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This research aims to use the multivariate geochemical dataset, generated by the Tellus project, to investigate the appropriate use of transformation methods to maintain the integrity of geochemical data and inherent constrained behaviour in multivariate relationships. The widely used normal score transform is compared with the use of a stepwise conditional transform technique. The Tellus Project, managed by GSNI and funded by the Department of Enterprise Trade and Development and the EU’s Building Sustainable Prosperity Fund, involves the most comprehensive geological mapping project ever undertaken in Northern Ireland. Previous study has demonstrated spatial variability in the Tellus data but geostatistical analysis and interpretation of the datasets requires use of an appropriate methodology that reproduces the inherently complex multivariate relations. Previous investigation of the Tellus geochemical data has included use of Gaussian-based techniques. However, earth science variables are rarely Gaussian, hence transformation of data is integral to the approach. The multivariate geochemical dataset generated by the Tellus project provides an opportunity to investigate the appropriate use of transformation methods, as required for Gaussian-based geostatistical analysis. In particular, the stepwise conditional transform is investigated and developed for the geochemical datasets obtained as part of the Tellus project. The transform is applied to four variables in a bivariate nested fashion due to the limited availability of data. Simulation of these transformed variables is then carried out, along with a corresponding back transformation to original units. Results show that the stepwise transform is successful in reproducing both univariate statistics and the complex bivariate relations exhibited by the data. Greater fidelity to multivariate relationships will improve uncertainty models, which are required for consequent geological, environmental and economic inferences.
Resumo:
A compositional multivariate approach is used to analyse regional scale soil geochemical data obtained as part of the Tellus Project generated by the Geological Survey Northern Ireland (GSNI). The multi-element total concentration data presented comprise XRF analyses of 6862 rural soil samples collected at 20cm depths on a non-aligned grid at one site per 2 km2. Censored data were imputed using published detection limits. Using these imputed values for 46 elements (including LOI), each soil sample site was assigned to the regional geology map provided by GSNI initially using the dominant lithology for the map polygon. Northern Ireland includes a diversity of geology representing a stratigraphic record from the Mesoproterozoic, up to and including the Palaeogene. However, the advance of ice sheets and their meltwaters over the last 100,000 years has left at least 80% of the bedrock covered by superficial deposits, including glacial till and post-glacial alluvium and peat. The question is to what extent the soil geochemistry reflects the underlying geology or superficial deposits. To address this, the geochemical data were transformed using centered log ratios (clr) to observe the requirements of compositional data analysis and avoid closure issues. Following this, compositional multivariate techniques including compositional Principal Component Analysis (PCA) and minimum/maximum autocorrelation factor (MAF) analysis method were used to determine the influence of underlying geology on the soil geochemistry signature. PCA showed that 72% of the variation was determined by the first four principal components (PC’s) implying “significant” structure in the data. Analysis of variance showed that only 10 PC’s were necessary to classify the soil geochemical data. To consider an improvement over PCA that uses the spatial relationships of the data, a classification based on MAF analysis was undertaken using the first 6 dominant factors. Understanding the relationship between soil geochemistry and superficial deposits is important for environmental monitoring of fragile ecosystems such as peat. To explore whether peat cover could be predicted from the classification, the lithology designation was adapted to include the presence of peat, based on GSNI superficial deposit polygons and linear discriminant analysis (LDA) undertaken. Prediction accuracy for LDA classification improved from 60.98% based on PCA using 10 principal components to 64.73% using MAF based on the 6 most dominant factors. The misclassification of peat may reflect degradation of peat covered areas since the creation of superficial deposit classification. Further work will examine the influence of underlying lithologies on elemental concentrations in peat composition and the effect of this in classification analysis.
Resumo:
Background: While there has been substantial research examining the correlates of comorbid substance abuse in psychotic disorders, it has been difficult to tease apart the relative importance of individual variables. Multivariate analyses are required, in which the relative contributions of risk factors to specific forms of substance misuse are examined, while taking into account the effects of other important correlates. Methods: This study used multivariate correlates of several forms of comorbid substance misuse in a large epidemiological sample of 852 Australians with DSMIII- R-diagnosed psychoses. Results: Multiple substance use was common and equally prevalent in nonaffective and affective psychoses. The most consistent correlate across the substance use disorders was male sex. Younger age groups were more likely to report the use of illegal drugs, while alcohol misuse was not associated with age. Side effects secondary to medication were associated with the misuse of cannabis and multiple substances, but not alcohol. Lower educational attainment was associated with cannabis misuse but not other forms of substance abuse. Conclusion: The profile of substance misuse in psychosis shows clinical and demographic gradients that can inform treatment and preventive research.
Resumo:
Anomalous dynamics in complex systems have gained much interest in recent years. In this paper, a two-dimensional anomalous subdiffusion equation (2D-ASDE) is considered. Two numerical methods for solving the 2D-ASDE are presented. Their stability, convergence and solvability are discussed. A new multivariate extrapolation is introduced to improve the accuracy. Finally, numerical examples are given to demonstrate the effectiveness of the schemes and confirm the theoretical analysis.
Resumo:
Multivariate methods are required to assess the interrelationships among multiple, concurrent symptoms. We examined the conceptual and contextual appropriateness of commonly used multivariate methods for cancer symptom cluster identification. From 178 publications identified in an online database search of Medline, CINAHL, and PsycINFO, limited to articles published in English, 10 years prior to March 2007, 13 cross-sectional studies met the inclusion criteria. Conceptually, common factor analysis (FA) and hierarchical cluster analysis (HCA) are appropriate for symptom cluster identification, not principal component analysis. As a basis for new directions in symptom management, FA methods are more appropriate than HCA. Principal axis factoring or maximum likelihood factoring, the scree plot, oblique rotation, and clinical interpretation are recommended approaches to symptom cluster identification.