1000 resultados para Multiprocessors systems
Resumo:
In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
A new algorithm is proposed for scheduling preemptible arbitrary-deadline sporadic task systems upon multiprocessor platforms, with interprocessor migration permitted. This algorithm is based on a task-splitting approach - while most tasks are entirely assigned to specific processors, a few tasks (fewer than the number of processors) may be split across two processors. This algorithm can be used for two distinct purposes: for actually scheduling specific sporadic task systems, and for feasibility analysis. Simulation- based evaluation indicates that this algorithm offers a significant improvement on the ability to schedule arbitrary- deadline sporadic task systems as compared to the contemporary state-of-art. With regard to feasibility analysis, the new algorithm is proved to offer superior performance guarantees in comparison to prior feasibility tests.
Resumo:
Utilization bounds for Earliest Deadline First(EDF) and Rate Monotonic(RM) scheduling are known and well understood for uniprocessor systems. In this paper, we derive limits on similar bounds for the multiprocessor case, when the individual processors need not be identical. Tasks are partitioned among the processors and RM scheduling is assumed to be the policy used in individual processors. A minimum limit on the bounds for a 'greedy' class of algorithms is given and proved, since the actual value of the bound depends on the algorithm that allocates the tasks. We also derive the utilization bound of an algorithm which allocates tasks in decreasing order of utilization factors. Knowledge of such bounds allows us to carry out very fast schedulability tests although we are constrained by the fact that the tests are sufficient but not necessary to ensure schedulability.
Resumo:
Relentless CMOS scaling coupled with lower design tolerances is making ICs increasingly susceptible to wear-out related permanent faults and transient faults, necessitating on-chip fault tolerance in future chip microprocessors (CMPs). In this paper we introduce a new energy-efficient fault-tolerant CMP architecture known as Redundant Execution using Critical Value Forwarding (RECVF). RECVF is based on two observations: (i) forwarding critical instruction results from the leading to the trailing core enables the latter to execute faster, and (ii) this speedup can be exploited to reduce energy consumption by operating the trailing core at a lower voltage-frequency level. Our evaluation shows that RECVF consumes 37% less energy than conventional dual modular redundant (DMR) execution of a program. It consumes only 1.26 times the energy of a non-fault-tolerant baseline and has a performance overhead of just 1.2%.
Resumo:
A preliminary version of this paper appeared in Proceedings of the 31st IEEE Real-Time Systems Symposium, 2010, pp. 239–248.
Resumo:
Consider the problem of assigning real-time tasks on a heterogeneous multiprocessor platform comprising two different types of processors — such a platform is referred to as two-type platform. We present two linearithmic timecomplexity algorithms, SA and SA-P, each providing the follow- ing guarantee. For a given two-type platform and a given task set, if there exists a feasible task-to-processor-type assignment such that tasks can be scheduled to meet deadlines by allowing them to migrate only between processors of the same type, then (i) using SA, it is guaranteed to find such a feasible task-to- processor-type assignment where the same restriction on task migration applies but given a platform in which processors are 1+α/2 times faster and (ii) SA-P succeeds in finding 2 a feasible task-to-processor assignment where tasks are not allowed to migrate between processors but given a platform in which processors are 1+α/times faster, where 0<α≤1. The parameter α is a property of the task set — it is the maximum utilization of any task which is less than or equal to 1.
Resumo:
Embedded real-time systems often have to support the embedding system in very different and changing application scenarios. An aircraft taxiing, taking off and in cruise flight is one example. The different application scenarios are reflected in the software structure with a changing task set and thus different operational modes. At the same time there is a strong push for integrating previously isolated functionalities in single-chip multicore processors. On such multicores the behavior of the system during a mode change, when the systems transitions from one mode to another, is complex but crucial to get right. In the past we have investigated mode change in multiprocessor systems where a mode change requires a complete change of task set. Now, we present the first analysis which considers mode changes in multicore systems, which use global EDF to schedule a set of mode independent (MI) and mode specific (MS) tasks. In such systems, only the set of MS tasks has to be replaced during mode changes, without jeopardizing the schedulability of the MI tasks. Of prime concern is that the mode change is safe and efficient: i.e. the mode change needs to be performed in a predefined time window and no deadlines may be missed as a function of the mode change.
Resumo:
Consider the problem of scheduling a set of sporadically arriving tasks on a uniform multiprocessor with the goal of meeting deadlines. A processor p has the speed Sp. Tasks can be preempted but they cannot migrate between processors. On each processor, tasks are scheduled according to rate-monotonic. We propose an algorithm that can schedule all task sets that any other possible algorithm can schedule assuming that our algorithm is given processors that are √2 / √2−1 ≈ 3.41 times faster. No such guarantees are previously known for partitioned static-priority scheduling on uniform multiprocessors.
Resumo:
Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform comprising two different types of processors—such a platform is referred to as two-type platform. We present two low degree polynomial time-complexity algorithms, SA and SA-P, each providing the following guarantee. For a given two-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then (i) using SA, it is guaranteed to find such an assignment where the same restriction on task migration applies but given a platform in which processors are 1+α/2 times faster and (ii) SA-P succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-migrative) but given a platform in which processors are 1+α times faster. The parameter 0<α≤1 is a property of the task set; it is the maximum of all the task utilizations that are no greater than 1. We evaluate average-case performance of both the algorithms by generating task sets randomly and measuring how much faster processors the algorithms need (which is upper bounded by 1+α/2 for SA and 1+α for SA-P) in order to output a feasible task assignment (intra-migrative for SA and non-migrative for SA-P). In our evaluations, for the vast majority of task sets, these algorithms require significantly smaller processor speedup than indicated by their theoretical bounds. Finally, we consider a special case where no task utilization in the given task set can exceed one and for this case, we (re-)prove the performance guarantees of SA and SA-P. We show, for both of the algorithms, that changing the adversary from intra-migrative to a more powerful one, namely fully-migrative, in which tasks can migrate between processors of any type, does not deteriorate the performance guarantees. For this special case, we compare the average-case performance of SA-P and a state-of-the-art algorithm by generating task sets randomly. In our evaluations, SA-P outperforms the state-of-the-art by requiring much smaller processor speedup and by running orders of magnitude faster.