978 resultados para Multiplication Montgomery


Relevância:

70.00% 70.00%

Publicador:

Resumo:

La multiplication dans le corps de Galois à 2^m éléments (i.e. GF(2^m)) est une opérations très importante pour les applications de la théorie des correcteurs et de la cryptographie. Dans ce mémoire, nous nous intéressons aux réalisations parallèles de multiplicateurs dans GF(2^m) lorsque ce dernier est généré par des trinômes irréductibles. Notre point de départ est le multiplicateur de Montgomery qui calcule A(x)B(x)x^(-u) efficacement, étant donné A(x), B(x) in GF(2^m) pour u choisi judicieusement. Nous étudions ensuite l'algorithme diviser pour régner PCHS qui permet de partitionner les multiplicandes d'un produit dans GF(2^m) lorsque m est impair. Nous l'appliquons pour la partitionnement de A(x) et de B(x) dans la multiplication de Montgomery A(x)B(x)x^(-u) pour GF(2^m) même si m est pair. Basé sur cette nouvelle approche, nous construisons un multiplicateur dans GF(2^m) généré par des trinôme irréductibles. Une nouvelle astuce de réutilisation des résultats intermédiaires nous permet d'éliminer plusieurs portes XOR redondantes. Les complexités de temps (i.e. le délais) et d'espace (i.e. le nombre de portes logiques) du nouveau multiplicateur sont ensuite analysées: 1. Le nouveau multiplicateur demande environ 25% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito lorsque GF(2^m) est généré par des trinômes irréductible et m est suffisamment grand. Le nombre de portes du nouveau multiplicateur est presque identique à celui du multiplicateur de Karatsuba proposé par Elia. 2. Le délai de calcul du nouveau multiplicateur excède celui des meilleurs multiplicateurs d'au plus deux évaluations de portes XOR. 3. Nous determinons le délai et le nombre de portes logiques du nouveau multiplicateur sur les deux corps de Galois recommandés par le National Institute of Standards and Technology (NIST). Nous montrons que notre multiplicateurs contient 15% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito au coût d'un délai d'au plus une porte XOR supplémentaire. De plus, notre multiplicateur a un délai d'une porte XOR moindre que celui du multiplicateur d'Elia au coût d'une augmentation de moins de 1% du nombre total de portes logiques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New FPGA architectures for the ordinary Montgomery multiplication algorithm and the FIOS modular multiplication algorithm are presented. The embedded 18×18-bit multipliers and fast carry look-ahead logic located on the Xilinx Virtex2 Pro family of FPGAs are used to perform the ordinary multiplications and additions/subtractions required by these two algorithms. The architectures are developed for use in Elliptic Curve Cryptosystems over GF(p), which require modular field multiplication to perform elliptic curve point addition and doubling. Field sizes of 128-bits and 256-bits are chosen but other field sizes can easily be accommodated, by rapidly reprogramming the FPGA. Overall, the larger the word size of the multiplier, the more efficiently it performs in terms of area/time product. Also, the FIOS algorithm is flexible in that one can tailor the multiplier architecture is to be area efficient, time efficient or a mixture of both by choosing a particular word size. It is estimated that the computation of a 256-bit scalar point multiplication over GF(p) would take about 4.8 ms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a hardware-software hybrid technique for modular multiplication over large binary fields. The technique involves application of Karatsuba-Ofman algorithm for polynomial multiplication and a novel technique for reduction. The proposed reduction technique is based on the popular repeated multiplication technique and Barrett reduction. We propose a new design of a parallel polynomial multiplier that serves as a hardware accelerator for large field multiplications. We show that the proposed reduction technique, accelerated using the modified polynomial multiplier, achieves significantly higher performance compared to a purely software technique and other hybrid techniques. We also show that the hybrid accelerated approach to modular field multiplication is significantly faster than the Montgomery algorithm based integrated multiplication approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new, single and unified Montgomery modular inverse algorithm, which performs both classical and Montgomery modular inversion, is proposed. This reduces the number of Montgomery multiplication operations required by 33% when compared with previous algorithms reported in the literature. The use of this in practice has been investigated by implementation of the improved unified algorithm and the previous algorithms on FPGA devices. The unified algorithm implementation shows a significant speed-up and a reduction in silicon area usage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall aim of the work presented in this paper has been to develop Montgomery modular multiplication architectures suitable for implementation on modern reconfigurable hardware. Accordingly, novel high-radix systolic array Montgomery multiplier designs are presented, as we believe that the inherent regular structure and absence of global interconnect associated with these, make them well-suited for implementation on modern FPGAs. Unlike previous approaches, each processing element (PE) comprises both an adder and a multiplier. The inclusion of a multiplier in the PE means that the need to pre-compute or store any multiples of the operands is avoided. This also allows very high-radix implementations to be realised, further reducing the amount of clock cycles per modular multiplication, while still maintaining a competitive critical delay. For demonstrative purposes, 512-bit and 1024-bit FPGA implementations using radices of 2(8) and 2(16) are presented. The subsequent throughput rates are the fastest reported to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical system which performs the multiplication of binary numbers is described and proof-of-principle experiments are performed. The simultaneous generation of all partial products, optical regrouping of bit products, and optical carry look-ahead addition are novel features of the proposed scheme which takes advantage of the parallel operations capability of optical computers. The proposed processor uses liquid crystal light valves (LCLVs). By space-sharing the LCLVs one such system could function as an array of multipliers. Together with the optical carry look-ahead adders described, this would constitute an optical matrix-vector multiplier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axillary shoot proliferation was obtained using explants of Eucalyptus grandis L. juvenile and mature stages on a defined medium. Murashige and Skoog medium (MS) supplemented with benzyladenine (BA), naphthalene acetic acid (NAA) and additional thiamine. Excised shoots were induced to root on a sequence of three media: (1) White's medium containing indoleacetic acid (IAA), NAA and indole butyric acid; (IBA), (2) half-strength MS medium with charcoal and (3) half-strength MS liquid medium. The two types of explants differed in rooting response, with juvenile-derived shoots giving 60% rooting and adult-derived ones only 35%. Thus, the factors limiting cloning of selected trees in vitro are determined to be those controlling rooting of shoots in E. grandis.