960 resultados para Multiple or Simultaneous Equation Models: Time-Series Models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We estimate the monthly volatility of the US economy from 1968 to 2006 by extending the coincidentindex model of Stock and Watson (1991). Our volatility index, which we call VOLINX, hasfour applications. First, it sheds light on the Great Moderation. VOLINX captures the decrease in thevolatility in the mid-80s as well as the different episodes of stress over the sample period. In the 70sand early 80s the stagflation and the two oil crises marked the pace of the volatility whereas 09/11 is themost relevant shock after the moderation. Second, it helps to understand the economic indicators thatcause volatility. While the main determinant of the coincident index is industrial production, VOLINXis mainly affected by employment and income. Third, it adapts the confidence bands of the forecasts.In and out-of-sample evaluations show that the confidence bands may differ up to 50% with respect to amodel with constant variance. Last, the methodology we use permits us to estimate monthly GDP, whichhas conditional volatility that is partly explained by VOLINX. These applications can be used by policymakers for monitoring and surveillance of the stress of the economy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of testing whether the observations X1, ..., Xn of a time series are independent with unspecified (possibly nonidentical) distributions symmetric about a common known median. Various bounds on the distributions of serial correlation coefficients are proposed: exponential bounds, Eaton-type bounds, Chebyshev bounds and Berry-Esséen-Zolotarev bounds. The bounds are exact in finite samples, distribution-free and easy to compute. The performance of the bounds is evaluated and compared with traditional serial dependence tests in a simulation experiment. The procedures proposed are applied to U.S. data on interest rates (commercial paper rate).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granger causality (GC) is a statistical technique used to estimate temporal associations in multivariate time series. Many applications and extensions of GC have been proposed since its formulation by Granger in 1969. Here we control for potentially mediating or confounding associations between time series in the context of event-related electrocorticographic (ECoG) time series. A pruning approach to remove spurious connections and simultaneously reduce the required number of estimations to fit the effective connectivity graph is proposed. Additionally, we consider the potential of adjusted GC applied to independent components as a method to explore temporal relationships between underlying source signals. Both approaches overcome limitations encountered when estimating many parameters in multivariate time-series data, an increasingly common predicament in today's brain mapping studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the power market, electricity prices play an important role at the economic level. The behavior of a price trend usually known as a structural break may change over time in terms of its mean value, its volatility, or it may change for a period of time before reverting back to its original behavior or switching to another style of behavior, and the latter is typically termed a regime shift or regime switch. Our task in this thesis is to develop an electricity price time series model that captures fat tailed distributions which can explain this behavior and analyze it for better understanding. For NordPool data used, the obtained Markov Regime-Switching model operates on two regimes: regular and non-regular. Three criteria have been considered price difference criterion, capacity/flow difference criterion and spikes in Finland criterion. The suitability of GARCH modeling to simulate multi-regime modeling is also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) linear estimator for stationary invertible vector autoregressive moving average (VARMA) models in the echelon form representation. General conditions for consistency and asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of the estimator is also provided, so that tests and confidence intervals can easily be constructed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work concerns forecasting with vector nonlinear time series models when errorsare correlated. Point forecasts are numerically obtained using bootstrap methods andillustrated by two examples. Evaluation concentrates on studying forecast equality andencompassing. Nonlinear impulse responses are further considered and graphically sum-marized by highest density region. Finally, two macroeconomic data sets are used toillustrate our work. The forecasts from linear or nonlinear model could contribute usefulinformation absent in the forecasts form the other model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amongst all the objectives in the study of time series, uncovering the dynamic law of its generation is probably the most important. When the underlying dynamics are not available, time series modelling consists of developing a model which best explains a sequence of observations. In this thesis, we consider hidden space models for analysing and describing time series. We first provide an introduction to the principal concepts of hidden state models and draw an analogy between hidden Markov models and state space models. Central ideas such as hidden state inference or parameter estimation are reviewed in detail. A key part of multivariate time series analysis is identifying the delay between different variables. We present a novel approach for time delay estimating in a non-stationary environment. The technique makes use of hidden Markov models and we demonstrate its application for estimating a crucial parameter in the oil industry. We then focus on hybrid models that we call dynamical local models. These models combine and generalise hidden Markov models and state space models. Probabilistic inference is unfortunately computationally intractable and we show how to make use of variational techniques for approximating the posterior distribution over the hidden state variables. Experimental simulations on synthetic and real-world data demonstrate the application of dynamical local models for segmenting a time series into regimes and providing predictive distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article analysed scenarios for Brazilian consumption of ethanol for the period 2006 to 2012. The results show that if the country`s GDP sustains a 4.6% a year growth, domestic consumption of fuel ethanol could increase to 25.16 billion liters in this period, which is a volume relatively close to the forecasted gasoline consumption of 31 billion liters. At a lower GDP growth of 1.22% a year, gasoline consumption would be reduced and domestic ethanol consumption in Brazil would be no higher than 18.32 billion liters. Contrary to the current situation, forecasts indicated that hydrated ethanol consumption could become much higher than anhydrous consumption in Brazil. The former is being consumed in cars moved exclusively by ethanol and flex-fuel cars, successfully introduced in the country at 2003. Flex cars allow Brazilian consumers to choose between gasoline and hydrated ethanol and immediately switch to whichever fuel presents the most favourable relative price.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last three decades have seen quite dramatic changes the way we modeled time dependent data. Linear processes have been in the center stage in modeling time series. As far as the second order properties are concerned, the theory and the methodology are very adequate.However, there are more and more evidences that linear models are not sufficiently flexible and rich enough for modeling purposes and that failure to account for non-linearities can be very misleading and have undesired consequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continued increase in availability of economic data in recent years and, more importantly, the possibility to construct larger frequency time series, have fostered the use (and development) of statistical and econometric techniques to treat them more accurately. This paper presents an exposition of structural time series models by which a time series can be decomposed as the sum of a trend, seasonal and irregular components. In addition to a detailled analysis of univariate speci fications we also address the SUTSE multivariate case and the issue of cointegration. Finally, the recursive estimation and smoothing by means of the Kalman filter algorithm is described taking into account its different stages, from initialisation to parameter s estimation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction effects are usually modeled by means of moderated regression analysis. Structural equation models with non-linear constraints make it possible to estimate interaction effects while correcting formeasurement error. From the various specifications, Jöreskog and Yang's(1996, 1998), likely the most parsimonious, has been chosen and further simplified. Up to now, only direct effects have been specified, thus wasting much of the capability of the structural equation approach. This paper presents and discusses an extension of Jöreskog and Yang's specification that can handle direct, indirect and interaction effects simultaneously. The model is illustrated by a study of the effects of an interactive style of use of budgets on both company innovation and performance