946 resultados para Multiple Signal Classification.
Resumo:
Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper discusses ECG signal classification after parametrizing the ECG waveforms in the wavelet domain. Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide a very parsimonious representation of ECG signals. In the current work, the filter parameters are adjusted by a numerical optimization algorithm in order to minimize a cost function associated to the filter cut-off sharpness. The goal consists of achieving a better compromise between frequency selectivity and time resolution at each decomposition level than standard orthogonal filter banks such as those of the Daubechies and Coiflet families. Our aim is to optimally decompose the signals in the wavelet domain so that they can be subsequently used as inputs for training to a neural network classifier.
Resumo:
The water column overlying the submerged aquatic vegetation (SAV) canopy presents difficulties when using remote sensing images for mapping such vegetation. Inherent and apparent water optical properties and its optically active components, which are commonly present in natural waters, in addition to the water column height over the canopy, and plant characteristics are some of the factors that affect the signal from SAV mainly due to its strong energy absorption in the near-infrared. By considering these interferences, a hypothesis was developed that the vegetation signal is better conserved and less absorbed by the water column in certain intervals of the visible region of the spectrum; as a consequence, it is possible to distinguish the SAV signal. To distinguish the signal from SAV, two types of classification approaches were selected. Both of these methods consider the hemispherical-conical reflectance factor (HCRF) spectrum shape, although one type was supervised and the other one was not. The first method adopts cluster analysis and uses the parameters of the band (absorption, asymmetry, height and width) obtained by continuum removal as the input of the classification. The spectral angle mapper (SAM) was adopted as the supervised classification approach. Both approaches tested different wavelength intervals in the visible and near-infrared spectra. It was demonstrated that the 585 to 685-nm interval, corresponding to the green, yellow and red wavelength bands, offered the best results in both classification approaches. However, SAM classification showed better results relative to cluster analysis and correctly separated all spectral curves with or without SAV. Based on this research, it can be concluded that it is possible to discriminate areas with and without SAV using remote sensing. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The central dogma of molecular biology dictates that DNA is transcribed into RNA, which is later translated into protein. One of the early activators in this process is the transcription factor NF-κB. We have determined that an NF-κB inducer, CARMA3, is required for proper neural tube closure, similar to other NF-κB inducers. Using a genetic knockout of CARMA3, we demonstrated that it is required for Gαq-coupled GPCR-induced NF-κB activation. This is facilitated through a MAPK and IKK phosphorylation-independent mechanism, most likely by controlling NEMO-associated ubiquitination. We have also shown that CARMA3 is required for EGF and HRG-induced NF-κB activation. This activation requires the activity of both EGFR and HER2, as well as PKC. Again, we observed no defect in IKK phosphorylation, although we determined a clear defect in IKK activation. Finally, we have begun to determine the role of CARMA3 to both EGFR and HER2-induced tumorigenicity. By overexpressing a constitutive active mutant of HER2 in our CARMA3 WT and KO MEF cells, we have shown CARMA3 is important for HER2-driven soft agar colony growth. We have also shown that knockdown of endogenous CARMA3 in the EGFR-overexpressing A431 cell line abolishes EGF-induced NF-κB activation. These same cells have a dramatically reduced capacity to form colonies in soft agar as well. Using both mouse xenografts and a transgenic model of HER2-induced breast cancer, we have initiated studies which will help to determine the role of CARMA3 to in vivo tumorigenesis. Collectively, this work reveals novel roles for the CARMA3 protein in development, GPCR and EGFR/HER2 signaling. It also suggests that CARMA3 is involved in EGFR/HER2 mediated tumorigenesis, possibly indicating a novel therapeutic target for use in treatment of cancer. ^
Resumo:
In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods.
Resumo:
Ce mémoire présente deux algorithmes qui ont pour but d’améliorer la précision de l’estimation de la direction d’arrivée de sources sonores et de leurs échos. Le premier algorithme, qui s’appelle la méthode par élimination des sources, permet d’améliorer l’estimation de la direction d’arrivée d’échos qui sont noyés dans le bruit. Le second, qui s’appelle Multiple Signal Classification à focalisation de phase, utilise l’information dans la phase à chaque fréquence pour déterminer la direction d’arrivée de sources à large bande. La combinaison de ces deux algorithmes permet de localiser des échos dont la puissance est de -17 dB par rapport à la source principale, jusqu’à un rapport échoà- bruit de -15 dB. Ce mémoire présente aussi des mesures expérimentales qui viennent confirmer les résultats obtenus lors de simulations.
Resumo:
In the present thesis we address the problem of detecting and localizing a small spherical target with characteristic electrical properties inside a volume of cylindrical shape, representing female breast, with MWI. One of the main works of this project is to properly extend the existing linear inversion algorithm from planar slice to volume reconstruction; results obtained, under the same conditions and experimental setup are reported for the two different approaches. Preliminar comparison and performance analysis of the reconstruction algorithms is performed via numerical simulations in a software-created environment: a single dipole antenna is used for illuminating the virtual breast phantom from different positions and, for each position, the corresponding scattered field value is registered. Collected data are then exploited in order to reconstruct the investigation domain, along with the scatterer position, in the form of image called pseudospectrum. During this process the tumor is modeled as a dielectric sphere of small radius and, for electromagnetic scattering purposes, it's treated as a point-like source. To improve the performance of reconstruction technique, we repeat the acquisition for a number of frequencies in a given range: the different pseudospectra, reconstructed from single frequency data, are incoherently combined with MUltiple SIgnal Classification (MUSIC) method which returns an overall enhanced image. We exploit multi-frequency approach to test the performance of 3D linear inversion reconstruction algorithm while varying the source position inside the phantom and the height of antenna plane. Analysis results and reconstructed images are then reported. Finally, we perform 3D reconstruction from experimental data gathered with the acquisition system in the microwave laboratory at DIFA, University of Bologna for a recently developed breast-phantom prototype; obtained pseudospectrum and performance analysis for the real model are reported.
Resumo:
Les techniques des directions d’arrivée (DOA) sont une voie prometteuse pour accroitre la capacité des systèmes et les services de télécommunications en permettant de mieux estimer le canal radio-mobile. Elles permettent aussi de suivre précisément des usagers cellulaires pour orienter les faisceaux d’antennes dans leur direction. S’inscrivant dans ce contexte, ce présent mémoire décrit étape par étape l’implémentation de l’algorithme de haut niveau MUSIC (MUltiple SIgnal Classification) sur une plateforme FPGA afin de déterminer en temps réel l’angle d’arrivée d’une ou des sources incidentes à un réseau d’antennes. Le concept du prototypage rapide des lois de commande (RCP) avec les outils de XilinxTM System generator (XSG) et du MBDK (Model Based Design Kit) de NutaqTM est le concept de développement utilisé. Ce concept se base sur une programmation de code haut niveau à travers des modèles, pour générer automatiquement un code de bas niveau. Une attention particulière est portée sur la méthode choisie pour résoudre le problème de la décomposition en valeurs et vecteurs propres de la matrice complexe de covariance par l’algorithme de Jacobi. L’architecture mise en place implémentant cette dernière dans le FPGA (Field Programmable Gate Array) est détaillée. Par ailleurs, il est prouvé que MUSIC ne peut effectuer une estimation intéressante de la position des sources sans une calibration préalable du réseau d’antennes. Ainsi, la technique de calibration par matrice G utilisée dans ce projet est présentée, en plus de son modèle d’implémentation. Enfin, les résultats expérimentaux du système mis à l’épreuve dans un environnement réel en présence d’une source puis de deux sources fortement corrélées sont illustrés et analysés.
Resumo:
Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2013
Resumo:
An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e.; cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e.; support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e.; there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Malaria is responsible for more than 1.5 million deaths each year, especially among children (Snow et al. 2005). Despite of the severity of malaria situation and great effort to the development of new drug targets (Yuan et al. 2011) there is still a relative low investment toward antimalarial drugs. Briefly there are targets classes of antimalarial drugs currently being tested including: kinases, proteases, ion channel of GPCR, nuclear receptor, among others (Gamo et al. 2010). Here we review malaria signal transduction pathways in Red Blood Cells (RBC) as well as infected RBCs and endothelial cells interactions, namely cytoadherence. The last process is thought to play an important role in the pathogenesis of severe malaria. The molecules displayed on the surface of both infected erythrocytes (IE) and vascular endothelial cells (EC) exert themselves as important mediators in cytoadherence, in that they not only induce structural and metabolic changes on both sides, but also trigger multiple signal transduction processes, leading to alteration of gene expression, with the balance between positive and negative regulation determining endothelial pathology during a malaria infection.
Resumo:
There is increasing evidence that heterotrimeric G-proteins (G-proteins) are involved in many plant processes including phytohormone response, pathogen defence and stomatal control. In animal systems, each of the three G-protein subunits belong to large multigene families; however, few subunits have been isolated from plants. Here we report the cloning of a second plant G-protein γ-subunit (AGG2) from Arabidopsis thaliana. The predicted AGG2 protein sequence shows 48% identity to the first identified Arabidopsis Gγ-subunit, AGG1. Furthermore, AGG2 contains all of the conserved characteristics of γ-subunits including a small size (100 amino acids, 11.1 kDa), C-terminal CAAX box and a N-terminal α-helix region capable of forming a coiled-coil interaction with the β-subunit. A strong interaction between AGG2 and both the tobacco (TGB1) and Arabidopsis (AGB1) β-subunits was observed in vivo using the yeast two-hybrid system. The strong association between AGG2 and AGB1 was confirmed in vitro. Southern and Northern analyses showed that AGG2 is a single copy gene in Arabidopsis producing two transcripts that are present in all tissues tested. The isolation of a second γ-subunit from A. thaliana indicates that plant G-proteins, like their mammalian counterparts, may form different heterotrimer combinations that presumably regulate multiple signal transduction pathways.