885 resultados para Multiple Instance Dictionary Learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional dictionary learning algorithms are used for finding a sparse representation on high dimensional data by transforming samples into a one-dimensional (1D) vector. This 1D model loses the inherent spatial structure property of data. An alternative solution is to employ Tensor Decomposition for dictionary learning on their original structural form —a tensor— by learning multiple dictionaries along each mode and the corresponding sparse representation in respect to the Kronecker product of these dictionaries. To learn tensor dictionaries along each mode, all the existing methods update each dictionary iteratively in an alternating manner. Because atoms from each mode dictionary jointly make contributions to the sparsity of tensor, existing works ignore atoms correlations between different mode dictionaries by treating each mode dictionary independently. In this paper, we propose a joint multiple dictionary learning method for tensor sparse coding, which explores atom correlations for sparse representation and updates multiple atoms from each mode dictionary simultaneously. In this algorithm, the Frequent-Pattern Tree (FP-tree) mining algorithm is employed to exploit frequent atom patterns in the sparse representation. Inspired by the idea of K-SVD, we develop a new dictionary update method that jointly updates elements in each pattern. Experimental results demonstrate our method outperforms other tensor based dictionary learning algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiple-instance learning (MIL) model has been successful in areas such as drug discovery and content-based image-retrieval. Recently, this model was generalized and a corresponding kernel was introduced to learn generalized MIL concepts with a support vector machine. While this kernel enjoyed empirical success, it has limitations in its representation. We extend this kernel by enriching its representation and empirically evaluate our new kernel on data from content-based image retrieval, biological sequence analysis, and drug discovery. We found that our new kernel generalized noticeably better than the old one in content-based image retrieval and biological sequence analysis and was slightly better or even with the old kernel in the other applications, showing that an SVM using this kernel does not overfit despite its richer representation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aircraft tracking plays a key and important role in the Sense-and-Avoid system of Unmanned Aerial Vehicles (UAVs). This paper presents a novel robust visual tracking algorithm for UAVs in the midair to track an arbitrary aircraft at real-time frame rates, together with a unique evaluation system. This visual algorithm mainly consists of adaptive discriminative visual tracking method, Multiple-Instance (MI) learning approach, Multiple-Classifier (MC) voting mechanism and Multiple-Resolution (MR) representation strategy, that is called Adaptive M3 tracker, i.e. AM3. In this tracker, the importance of test sample has been integrated to improve the tracking stability, accuracy and real-time performances. The experimental results show that this algorithm is more robust, efficient and accurate against the existing state-of-art trackers, overcoming the problems generated by the challenging situations such as obvious appearance change, variant surrounding illumination, partial aircraft occlusion, blur motion, rapid pose variation and onboard mechanical vibration, low computation capacity and delayed information communication between UAVs and Ground Station (GS). To our best knowledge, this is the first work to present this tracker for solving online learning and tracking freewill aircraft/intruder in the UAVs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are many learning problems for which the examples given by the teacher are ambiguously labeled. In this thesis, we will examine one framework of learning from ambiguous examples known as Multiple-Instance learning. Each example is a bag, consisting of any number of instances. A bag is labeled negative if all instances in it are negative. A bag is labeled positive if at least one instance in it is positive. Because the instances themselves are not labeled, each positive bag is an ambiguous example. We would like to learn a concept which will correctly classify unseen bags. We have developed a measure called Diverse Density and algorithms for learning from multiple-instance examples. We have applied these techniques to problems in drug design, stock prediction, and image database retrieval. These serve as examples of how to translate the ambiguity in the application domain into bags, as well as successful examples of applying Diverse Density techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexity of learning implies that learning seldom is about just one thing. It can be said that learning processes are interdisciplinary. Within educational contexts, learning is not limited to constructed school subjects. In drama education, learning is simultaneously about drama as aesthetic expression and content because drama always is about something. The mainly focus can be on form, content or social aspects. The different aspects are always present, but may be more or less foreground or the background depending on the purpose of education. How do development concerning understanding of form, content, and social interaction, interact in a learning process in drama? My research is based on the view that learning at the same time takes place as an individual, internal process and a socially situated, inter-subjective process. Can learning in drama imply learning that can be transferred between different situations, a transformative learning and if so, how? Transformative learning includes cognitive, affective and corporal and social action aspects and means that the individual's frames of reference are transformed, evolved, to become more insightful and flexible which implies a change of personality. It leads to an integrated knowledge that can be applied in different contexts.   In the paper that will be presented at the conference, theories about how we learn in drama will be discussed in relation to my empirical research concerning drama and learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I am a part-time graduate student who works in industry. This study is my narrative about how six workers and I describe shop-floor learning activities, that is learning activities that occur where work is done, outside a classroom. Because this study is narrative inquiry, you wilileam about me, the narrator, more than you would in a more conventional study. This is a common approach in narrative inquiry and it is important because my intentions shape the way that I tell these six workers' stories. I developed a typology of learning activities by synthesizing various theoretical frameworks. This typology categorizes shop-floor learning activities into five types: onthe- job training, participative learning, educational advertising, incidental learning, and self-directed learning. Although learning can occur in each of these activities in isolation, it is often comprised of a mixture of these activities. The literature review contains a number of cases that have been developed from situations described in the literature. These cases are here to make the similarities and differences between the types of learning activities that they represent more understandable to the reader and to ground the typology in practice as well as in theory. The findings are presented as reader's theatre, a dramatic presentation of these workers' narratives. The workers tell us that learning involves "being shown," and if this is not done properly they "learn the hard way." I found that many of their best case lean1ing activities involved on-the-job training, participative learning, incidentalleaming, and self-directed learning. Worst case examples were typically lacking in properly designed and delivered participative learning activities and to a lesser degree lacking carefully planned and delivered on-the-job training activities. Included are two reflective chapters that describe two cases: Learning "Engels" (English), and Learning to Write. In these chapters you will read about how I came to see that my own shop-floor learning-learning to write this thesis-could be enhanced through participative learning activities. I came to see my thesis supervisor as not only my instructor who directed and judged my learning activities, but also as a more experienced researcher who was there to participate in this process with me and to help me begin to enter the research community. Shop-floor learning involves learners and educators participating in multistranded learning activities, which require an organizational factor of careful planning and delivery. As with learning activities, which can be multi-stranded, so too, there can be multiple orientations to learning on the shop floor. In our stories, you will see that these six workers and I didn't exhibit just one orientation to learning in our stories. Our stories demonstrate that we could be behaviorist and cognitivist and humanist and social learners and constructivist in our orientation to learning. Our stories show that learning is complex and involves multiple strands, orientations, and factors. Our stories show that learning narratives capture the essence of learning-the learners, the educators, the learning activities, the organizational factors, and the learning orientations. Learning narratives can help learners and educators make sense of shop-floor learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to verify the effects of a metatextual intervention program, in the elaboration of stories written by students with learning difficulties. Four students were included in the sample of both genders, with ages ranging between eight years and four months and ten years and two months of age. The program was implemented at the participant schools, using an approach of multiple baseline within-subjects, with two conditions: baseline and intervention. Data analysis was based on the classification of stories produced by the students. Mann-Whitney testing was also applied, to analyze whether there have been significant changes in these productions. The results indicated that all students have improved performance in relation to the categories of produced stories, from elementary schemas (33%), for a more elaborate scheme (77%), with a better structuring of the elements that constitute a story. Statistical analysis also showed that the intervention has produced significant results for all variables analyzed. The data obtained have shown that the program was effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main challenges of multimedia data retrieval lie in the effective mapping between low-level features and high-level concepts, and in the individual users' subjective perceptions of multimedia content. ^ The objectives of this dissertation are to develop an integrated multimedia indexing and retrieval framework with the aim to bridge the gap between semantic concepts and low-level features. To achieve this goal, a set of core techniques have been developed, including image segmentation, content-based image retrieval, object tracking, video indexing, and video event detection. These core techniques are integrated in a systematic way to enable the semantic search for images/videos, and can be tailored to solve the problems in other multimedia related domains. In image retrieval, two new methods of bridging the semantic gap are proposed: (1) for general content-based image retrieval, a stochastic mechanism is utilized to enable the long-term learning of high-level concepts from a set of training data, such as user access frequencies and access patterns of images. (2) In addition to whole-image retrieval, a novel multiple instance learning framework is proposed for object-based image retrieval, by which a user is allowed to more effectively search for images that contain multiple objects of interest. An enhanced image segmentation algorithm is developed to extract the object information from images. This segmentation algorithm is further used in video indexing and retrieval, by which a robust video shot/scene segmentation method is developed based on low-level visual feature comparison, object tracking, and audio analysis. Based on shot boundaries, a novel data mining framework is further proposed to detect events in soccer videos, while fully utilizing the multi-modality features and object information obtained through video shot/scene detection. ^ Another contribution of this dissertation is the potential of the above techniques to be tailored and applied to other multimedia applications. This is demonstrated by their utilization in traffic video surveillance applications. The enhanced image segmentation algorithm, coupled with an adaptive background learning algorithm, improves the performance of vehicle identification. A sophisticated object tracking algorithm is proposed to track individual vehicles, while the spatial and temporal relationships of vehicle objects are modeled by an abstract semantic model. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanotechnology has revolutionised humanity's capability in building microscopic systems by manipulating materials on a molecular and atomic scale. Nan-osystems are becoming increasingly smaller and more complex from the chemical perspective which increases the demand for microscopic characterisation techniques. Among others, transmission electron microscopy (TEM) is an indispensable tool that is increasingly used to study the structures of nanosystems down to the molecular and atomic scale. However, despite the effectivity of this tool, it can only provide 2-dimensional projection (shadow) images of the 3D structure, leaving the 3-dimensional information hidden which can lead to incomplete or erroneous characterization. One very promising inspection method is Electron Tomography (ET), which is rapidly becoming an important tool to explore the 3D nano-world. ET provides (sub-)nanometer resolution in all three dimensions of the sample under investigation. However, the fidelity of the ET tomogram that is achieved by current ET reconstruction procedures remains a major challenge. This thesis addresses the assessment and advancement of electron tomographic methods to enable high-fidelity three-dimensional investigations. A quality assessment investigation was conducted to provide a quality quantitative analysis of the main established ET reconstruction algorithms and to study the influence of the experimental conditions on the quality of the reconstructed ET tomogram. Regular shaped nanoparticles were used as a ground-truth for this study. It is concluded that the fidelity of the post-reconstruction quantitative analysis and segmentation is limited, mainly by the fidelity of the reconstructed ET tomogram. This motivates the development of an improved tomographic reconstruction process. In this thesis, a novel ET method was proposed, named dictionary learning electron tomography (DLET). DLET is based on the recent mathematical theorem of compressed sensing (CS) which employs the sparsity of ET tomograms to enable accurate reconstruction from undersampled (S)TEM tilt series. DLET learns the sparsifying transform (dictionary) in an adaptive way and reconstructs the tomogram simultaneously from highly undersampled tilt series. In this method, the sparsity is applied on overlapping image patches favouring local structures. Furthermore, the dictionary is adapted to the specific tomogram instance, thereby favouring better sparsity and consequently higher quality reconstructions. The reconstruction algorithm is based on an alternating procedure that learns the sparsifying dictionary and employs it to remove artifacts and noise in one step, and then restores the tomogram data in the other step. Simulation and real ET experiments of several morphologies are performed with a variety of setups. Reconstruction results validate its efficiency in both noiseless and noisy cases and show that it yields an improved reconstruction quality with fast convergence. The proposed method enables the recovery of high-fidelity information without the need to worry about what sparsifying transform to select or whether the images used strictly follow the pre-conditions of a certain transform (e.g. strictly piecewise constant for Total Variation minimisation). This can also avoid artifacts that can be introduced by specific sparsifying transforms (e.g. the staircase artifacts the may result when using Total Variation minimisation). Moreover, this thesis shows how reliable elementally sensitive tomography using EELS is possible with the aid of both appropriate use of Dual electron energy loss spectroscopy (DualEELS) and the DLET compressed sensing algorithm to make the best use of the limited data volume and signal to noise inherent in core-loss electron energy loss spectroscopy (EELS) from nanoparticles of an industrially important material. Taken together, the results presented in this thesis demonstrates how high-fidelity ET reconstructions can be achieved using a compressed sensing approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Object recognition has long been a core problem in computer vision. To improve object spatial support and speed up object localization for object recognition, generating high-quality category-independent object proposals as the input for object recognition system has drawn attention recently. Given an image, we generate a limited number of high-quality and category-independent object proposals in advance and used as inputs for many computer vision tasks. We present an efficient dictionary-based model for image classification task. We further extend the work to a discriminative dictionary learning method for tensor sparse coding. In the first part, a multi-scale greedy-based object proposal generation approach is presented. Based on the multi-scale nature of objects in images, our approach is built on top of a hierarchical segmentation. We first identify the representative and diverse exemplar clusters within each scale. Object proposals are obtained by selecting a subset from the multi-scale segment pool via maximizing a submodular objective function, which consists of a weighted coverage term, a single-scale diversity term and a multi-scale reward term. The weighted coverage term forces the selected set of object proposals to be representative and compact; the single-scale diversity term encourages choosing segments from different exemplar clusters so that they will cover as many object patterns as possible; the multi-scale reward term encourages the selected proposals to be discriminative and selected from multiple layers generated by the hierarchical image segmentation. The experimental results on the Berkeley Segmentation Dataset and PASCAL VOC2012 segmentation dataset demonstrate the accuracy and efficiency of our object proposal model. Additionally, we validate our object proposals in simultaneous segmentation and detection and outperform the state-of-art performance. To classify the object in the image, we design a discriminative, structural low-rank framework for image classification. We use a supervised learning method to construct a discriminative and reconstructive dictionary. By introducing an ideal regularization term, we perform low-rank matrix recovery for contaminated training data from all categories simultaneously without losing structural information. A discriminative low-rank representation for images with respect to the constructed dictionary is obtained. With semantic structure information and strong identification capability, this representation is good for classification tasks even using a simple linear multi-classifier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research was to apply a test that measures different multiple intelligences in children from two different elementary schools to determine whether there are differences between the Academicist Pedagogical Model (traditional approach) established by the Costa Rican Ministry of Public Education and the Cognitive Pedagogical Model (MPC) (constructivist approach). A total of 29 boys and 20 girls with ages 8 to 12 from two different public schools in Heredia (Laboratorio School and San Isidro School) participated in this study. The instrument used was a Multiple Intelligences Test for school age children (Vega, 2006), which consists of 15 items subdivided in seven categories: linguistic, logical-mathematical, visual, kinaesthetic, musical, interpersonal, and intrapersonal. Descriptive and inferential statistics (Two-Way ANOVA) were used for the analysis of data.  Significant differences were found in linguistic intelligence (F:9.47; p < 0.01) between the MPC school (3.24±1.24 points) and the academicist school (2.31±1.10 points).  Differences were also found between sex (F:5.26; p< 0.05), for girls (3.25±1.02 points) and boys (2.52±1.30 points). In addition, the musical intelligence showed significant statistical differences between sexes (F: 7.97; p < 0.05).  In conclusion, the learning pedagogical models in Costa Rican public schools must be updated based on the new learning trends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A linha de pesquisa em multimodos e múltiplas representações vem atualmente sendo inspiradora de ações instrucionais na educação científica. Partindo dos fundamentos que justificam um encaminhamento didático à luz dessas referências, este trabalho procura mostrar que há compatibilidade dos seus fundamentos com a teoria da aprendizagem significativa de Ausubel e com as questões levantadas pelas pesquisas que indicam a necessidade de se considerar a subjetividade dos alunos presentes numa sala de aula. Essencialmente, procuramos argumentar que a promoção de um ensino por meio de multimodos e múltiplas representações é consistente com o ambiente plural das subjetividades existentes numa sala de aula e com uma aprendizagem significativa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relatório de estágio de mestrado em Ensino de Inglês e Espanhol no 3º Ciclo do Ensino Básico e no Ensino Secundário

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the implications for monetary policy of heterogeneous expectations in a New Keynesian model. The assumption of rational expectations is replaced with parsimonious forecasting models where agents select between predictors that are underparameterized. In a Misspecification Equilibrium agents only select the best-performing statistical models. We demonstrate that, even when monetary policy rules satisfy the Taylor principle by adjusting nominal interest rates more than one for one with inflation, there may exist equilibria with Intrinsic Heterogeneity. Under certain conditions, there may exist multiple misspecification equilibria. We show that these findings have important implications for business cycle dynamics and for the design of monetary policy.