890 resultados para Multiple Decision Problem
Resumo:
In questa tesi viene analizzato un problema di ottimizzazione proposto da alcuni esercizi commerciali che hanno la necessita` di selezionare e disporre i propri ar- ticoli in negozio. Il problema nasce dall’esigenza di massimizzare il profitto com- plessivo atteso dei prodotti in esposizione, trovando per ognuno una locazione sugli scaffali. I prodotti sono suddivisi in dipartimenti, dai quali solo un ele- mento deve essere selezionato ed esposto. In oltre si prevede la possibilita` di esprimere vincoli sulla locazione e compatibilita` dei prodotti. Il problema risul- tante `e una generalizzazione dei gia` noti Multiple-Choice Knapsack Problem e Multiple Knapsack Problem. Dopo una ricerca esaustiva in letteratura si `e ev- into che questo problema non `e ancora stato studiato. Si `e quindi provveduto a formalizzare il problema mediante un modello di programmazione lineare intera. Si propone un algoritmo esatto per la risoluzione del problema basato su column generation e branch and price. Sono stati formulati quattro modelli differenti per la risoluzione del pricing problem su cui si basa il column generation, per individuare quale sia il piu` efficiente. Tre dei quattro modelli proposti hanno performance comparabili, mentre l’ultimo si `e rivelato piu` inefficiente. Dai risul- tati ottenuti si evince che il metodo risolutivo proposto `e adatto a istanze di dimensione medio-bassa.
Resumo:
In the traditional TOPSIS, the ideal solutions are assumed to be located at the endpoints of the data interval. However, not all performance attributes possess ideal values at the endpoints. We termed performance attributes that have ideal values at extreme points as Type-1 attributes. Type-2 attributes however possess ideal values somewhere within the data interval instead of being at the extreme end points. This provides a preference ranking problem when all attributes are computed and assumed to be of the Type-1 nature. To overcome this issue, we propose a new Fuzzy DEA method for computing the ideal values and distance function of Type-2 attributes in a TOPSIS methodology. Our method allows Type-1 and Type-2 attributes to be included in an evaluation system without compromising the ranking quality. The efficacy of the proposed model is illustrated with a vendor evaluation case for a high-tech investment decision making exercise. A comparison analysis with the traditional TOPSIS is also presented. © 2012 Springer Science+Business Media B.V.
Resumo:
This paper introduces a new technique for optimizing the trading strategy of brokers that autonomously trade in re- tail and wholesale markets. Simultaneous optimization of re- tail and wholesale strategies has been considered by existing studies as intractable. Therefore, each of these strategies is optimized separately and their interdependence is generally ignored, with resulting broker agents not aiming for a glob- ally optimal retail and wholesale strategy. In this paper, we propose a novel formalization, based on a semi-Markov deci- sion process (SMDP), which globally and simultaneously op- timizes retail and wholesale strategies. The SMDP is solved using hierarchical reinforcement learning (HRL) in multi- agent environments. To address the curse of dimensionality, which arises when applying SMDP and HRL to complex de- cision problems, we propose an ecient knowledge transfer approach. This enables the reuse of learned trading skills in order to speed up the learning in new markets, at the same time as making the broker transportable across market envi- ronments. The proposed SMDP-broker has been thoroughly evaluated in two well-established multi-agent simulation en- vironments within the Trading Agent Competition (TAC) community. Analysis of controlled experiments shows that this broker can outperform the top TAC-brokers. More- over, our broker is able to perform well in a wide range of environments by re-using knowledge acquired in previously experienced settings.
Resumo:
The asymptotic behavior of multiple decision procedures is studied when the underlying distributions depend on an unknown nuisance parameter. An adaptive procedure must be asymptotically optimal for each value of this nuisance parameter, and it should not depend on its value. A necessary and sufficient condition for the existence of such a procedure is derived. Several examples are investigated in detail, and possible lack of adaptation of the traditional overall maximum likelihood rule is discussed.
Resumo:
International audience
Resumo:
A collective decision problem is described by a set of agents, a profile of single-peaked preferences over the real line and a number k of public facilities to be located. We consider public facilities that do not su¤er from congestion and are non-excludable. We provide a characterization of the class of rules satisfying Pareto-efficiency, object-population monotonicity and sovereignty. Each rule in the class is a priority rule that selects locations according to a predetermined priority ordering among interest groups. We characterize each of the subclasses of priority rules that respectively satisfy anonymity, hiding-proofness and strategy-proofness. In particular, we prove that a priority rule is strategy-proof if and only if it partitions the set of agents into a fixed hierarchy. Alternatively, any such rule can be viewed as a collection of fixed-populations generalized peak-selection median rules (Moulin, 1980), that are linked across populations, in a way that we describe.
Resumo:
In the context of decision making under uncertainty, we formalize the concept of analogy: an analogy between two decision problems is a mapping that transforms one problem into the other while preserving the problem's structure. We identify the basic structure of a decision problem, and provide a representation of the mappings that pre- serve this structure. We then consider decision makers who use multiple analogies. Our main results are a representation theorem for "aggregators" of analogies satisfying certain minimal requirements, and the identification of preferences emerging from analogical reasoning. We show that a large variety of multiple-prior preferences can be thought of as emerging from analogical reasoning.
Resumo:
A chance constrained programming model is developed to assist Queensland barley growers make varietal and agronomic decisions in the face of changing product demands and volatile production conditions. Unsuitable or overlooked in many risk programming applications, the chance constrained programming approach nonetheless aptly captures the single-stage decision problem faced by barley growers of whether to plant lower-yielding but potentially higher-priced malting varieties, given a particular expectation of meeting malting grade standards. Different expectations greatly affect the optimal mix of malting and feed barley activities. The analysis highlights the suitability of chance constrained programming to this specific class of farm decision problem.
Resumo:
Multi-criteria decision analysis(MCDA) has been one of the fastest-growing areas of operations research during the last decades. The academic attention devoted to MCDA motivated the development of a great variety of approaches and methods within the field. These methods distinguish themselves in terms of procedures, theoretical assumptions and type of decision addressed. This diversity poses challenges to the process of selecting the most suited method for a specific real-world decision problem. In this paper we present a case study in a real-world decision problem arising in the painting sector of an automobile plant. We tackle the problem by resorting to the well-known AHP method and to the MCDA method proposed by Pereira and Fontes (2012) (MMASSI). By relying on two, rather than one, MCDA methods we expect to improve the confidence and robustness of the obtained results. The contributions of this paper are twofold: first, we intend to investigate the contrasts and similarities of the results obtained by distinct MCDA approaches (AHP and MMASSI); secondly, we expect to enrich the literature of the field with a real-world MCDA case study on a complex decision making problem since there is a paucity of applied research work addressing real decision problems faced by organizations.
Resumo:
Multi-criteria decision analysis (MCDA) has been one of the fastest-growing areas of operations research during the last decades. The academic attention devoted to MCDA motivated the development of a great variety of approaches and methods within the field. These methods distinguish themselves in terms of procedures, theoretical assumptions and type of decision addressed. This diversity poses challenges to the process of selecting the most suited method for a specific real-world decision problem. In this paper we present a case study in a real-world decision problem arising in the painting sector of an automobile plant. We tackle the problem by resorting to the well-known AHP method and to the MCDA method proposed by Pereira and Fontes (2012) (MMASSI). By relying on two, rather than one, MCDA methods we expect to improve the confidence and robustness of the obtained results. The contributions of this paper are twofold: first, we intend to investigate the contrasts and similarities of the results obtained by distinct MCDA approaches (AHP and MMASSI); secondly, we expect to enrich the literature of the field with a real-world MCDA case study on a complex decision making problem since there is a paucity of applied research work addressing real decision problems faced by organizations.
Resumo:
I develop a model of endogenous bounded rationality due to search costs, arising implicitly from the problems complexity. The decision maker is not required to know the entire structure of the problem when making choices but can think ahead, through costly search, to reveal more of it. However, the costs of search are not assumed exogenously; they are inferred from revealed preferences through her choices. Thus, bounded rationality and its extent emerge endogenously: as problems become simpler or as the benefits of deeper search become larger relative to its costs, the choices more closely resemble those of a rational agent. For a fixed decision problem, the costs of search will vary across agents. For a given decision maker, they will vary across problems. The model explains, therefore, why the disparity, between observed choices and those prescribed under rationality, varies across agents and problems. It also suggests, under reasonable assumptions, an identifying prediction: a relation between the benefits of deeper search and the depth of the search. As long as calibration of the search costs is possible, this can be tested on any agent-problem pair. My approach provides a common framework for depicting the underlying limitations that force departures from rationality in different and unrelated decision-making situations. Specifically, I show that it is consistent with violations of timing independence in temporal framing problems, dynamic inconsistency and diversification bias in sequential versus simultaneous choice problems, and with plausible but contrasting risk attitudes across small- and large-stakes gambles.
Resumo:
What genotype should the scientist specify for conducting a database search to try to find the source of a low-template-DNA (lt-DNA) trace? When the scientist answers this question, he or she makes a decision. Here, we approach this decision problem from a normative point of view by defining a decision-theoretic framework for answering this question for one locus. This framework combines the probability distribution describing the uncertainty over the trace's donor's possible genotypes with a loss function describing the scientist's preferences concerning false exclusions and false inclusions that may result from the database search. According to this approach, the scientist should choose the genotype designation that minimizes the expected loss. To illustrate the results produced by this approach, we apply it to two hypothetical cases: (1) the case of observing one peak for allele xi on a single electropherogram, and (2) the case of observing one peak for allele xi on one replicate, and a pair of peaks for alleles xi and xj, i ≠ j, on a second replicate. Given that the probabilities of allele drop-out are defined as functions of the observed peak heights, the threshold values marking the turning points when the scientist should switch from one designation to another are derived in terms of the observed peak heights. For each case, sensitivity analyses show the impact of the model's parameters on these threshold values. The results support the conclusion that the procedure should not focus on a single threshold value for making this decision for all alleles, all loci and in all laboratories.
Resumo:
Decisions taken in modern organizations are often multi-dimensional, involving multiple decision makers and several criteria measured on different scales. Multiple Criteria Decision Making (MCDM) methods are designed to analyze and to give recommendations in this kind of situations. Among the numerous MCDM methods, two large families of methods are the multi-attribute utility theory based methods and the outranking methods. Traditionally both method families require exact values for technical parameters and criteria measurements, as well as for preferences expressed as weights. Often it is hard, if not impossible, to obtain exact values. Stochastic Multicriteria Acceptability Analysis (SMAA) is a family of methods designed to help in this type of situations where exact values are not available. Different variants of SMAA allow handling all types of MCDM problems. They support defining the model through uncertain, imprecise, or completely missing values. The methods are based on simulation that is applied to obtain descriptive indices characterizing the problem. In this thesis we present new advances in the SMAA methodology. We present and analyze algorithms for the SMAA-2 method and its extension to handle ordinal preferences. We then present an application of SMAA-2 to an area where MCDM models have not been applied before: planning elevator groups for high-rise buildings. Following this, we introduce two new methods to the family: SMAA-TRI that extends ELECTRE TRI for sorting problems with uncertain parameter values, and SMAA-III that extends ELECTRE III in a similar way. An efficient software implementing these two methods has been developed in conjunction with this work, and is briefly presented in this thesis. The thesis is closed with a comprehensive survey of SMAA methodology including a definition of a unified framework.
Resumo:
In order to broaden our knowledge and understanding of the decision steps in the criminal investigation process, we started by evaluating the decision to analyse a trace and the factors involved in this decision step. This decision step is embedded in the complete criminal investigation process, involving multiple decision and triaging steps. Considering robbery cases occurring in a geographic region during a 2-year-period, we have studied the factors influencing the decision to submit biological traces, directly sampled on the scene of the robbery or on collected objects, for analysis. The factors were categorised into five knowledge dimensions: strategic, immediate, physical, criminal and utility and decision tree analysis was carried out. Factors in each category played a role in the decision to analyse a biological trace. Interestingly, factors involving information available prior to the analysis are of importance, such as the fact that a positive result (a profile suitable for comparison) is already available in the case, or that a suspect has been identified through traditional police work before analysis. One factor that was taken into account, but was not significant, is the matrix of the trace. Hence, the decision to analyse a trace is not influenced by this variable. The decision to analyse a trace first is very complex and many of the tested variables were taken into account. The decisions are often made on a case-by-case basis.
Resumo:
Outsourcing is related to the action which an organization deals with its suppliers through a kind of business contract where a specific activity or service has been hired to be made. The outsourcing of some activities has become a common practice in the industry, nowadays. It reduces costs, significantly, in the production process and, at the same time, adds some values to the business organization. However it is necessary to measure the performance of these activities. Data Envelopment Analysis (DEA) is a non-parametric method useful to measure comparative performance. It has a wide range of applications measuring comparative efficiency. The Analytic Hierarchy Process (AHP) is a multiple criteria decision-making method that uses hierarchic structures to represent a decision problem and then develops priorities for the alternatives based on the decision-maker's judgments. This paper presents an integrated application based on DEA and AHP to evaluate the efficiency of subcontracted companies in a Brazilian aerospace factory. © 2007 Springer-Verlag London Limited.