75 resultados para Multiphysics
Resumo:
The approach presented in this paper consists of an energy-based field-circuit coupling in combination with multi-physics simulation of the acoustic radiation of electrical machines. The proposed method is applied to a special switched reluctance motor with asymmetric pole geometry to improve the start-up torque. The pole shape has been optimized, subject to low torque ripple, in a previous study. The proposed approach here is used to analyze the impact of the optimization on the overall acoustic behavior. The field-circuit coupling is based on a temporary lumped-parameter model of the magnetic part incorporated into a circuit simulation based on the modified nodal analysis. The harmonic force excitation is calculated by means of stress tensor computation, and it is transformed to a mechanical mesh by mapping techniques. The structural dynamic problem is solved in the frequency domain using a finite-element modal analysis and superposition. The radiation characteristic is obtained from boundary element acoustic simulation. Simulation results of both rotor types are compared, and measurements of the drive are presented.
Resumo:
Micro-tools offer significant promise in a wide range of applications Such as cell Manipulation, microsurgery, and micro/nanotechnology processes. Such special micro-tools consist of multi-flexible structures actuated by two or more piezoceramic devices that must generate output displacements and forces lit different specified points of the domain and at different directions. The micro-tool Structure acts as a mechanical transformer by amplifying and changing the direction of the piezoceramics Output displacements. The design of these micro-tools involves minimization of the coupling among movements generated by various piezoceramics. To obtain enhanced micro-tool performance, the concept of multifunctional and functionally graded materials is extended by, tailoring elastic and piezoelectric properties Of the piezoceramics while simultaneously optimizing the multi-flexible structural configuration using multiphysics topology optimization. The design process considers the influence of piezoceramic property gradation and also its polarization sign. The method is implemented considering continuum material distribution with special interpolation of fictitious densities in the design domain. As examples, designs of a single piezoactuator, an XY nano-positioner actuated by two graded piezoceramics, and a micro-gripper actuated by three graded piezoceramics are considered. The results show that material gradation plays an important role to improve actuator performance, which may also lead to optimal displacements and coupling ratios with reduced amount of piezoelectric material. The present examples are limited to two-dimensional models because many of the applications for Such micro-tools are planar devices. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
Dissertation to obtain the degree of Doctor of Philosophy in Biomedical Engineering
Resumo:
Tese de Doutoramento em Engenharia Civil (área de especialização em Engenharia de Estruturas).
Resumo:
We present a spatiotemporal adaptive multiscale algorithm, which is based on the Multiscale Finite Volume method. The algorithm offers a very efficient framework to deal with multiphysics problems and to couple regions with different spatial resolution. We employ the method to simulate two-phase flow through porous media. At the fine scale, we consider a pore-scale description of the flow based on the Volume Of Fluid method. In order to construct a global problem that describes the coarse-scale behavior, the equations are averaged numerically with respect to auxiliary control volumes, and a Darcy-like coarse-scale model is obtained. The space adaptivity is based on the idea that a fine-scale description is only required in the front region, whereas the resolution can be coarsened elsewhere. Temporal adaptivity relies on the fact that the fine-scale and the coarse-scale problems can be solved with different temporal resolution (longer time steps can be used at the coarse scale). By simulating drainage under unstable flow conditions, we show that the method is able to capture the coarse-scale behavior outside the front region and to reproduce complex fluid patterns in the front region.
Resumo:
Esta tese é dedicada aos sensores de fibra ótica especificamente aos sensores baseados no fenómeno de ressonância de plasmão de superfície, SPR (Surface Plasmon Resonance), gerados em fibras óticas com configuração do tipo “D”, para aplicação em sensores refratométricos. Numa primeira parte desta dissertação são descritos os aspetos teóricos fundamentais para a compreensão dos fenómenos de ressonância de plasmões de superfície e a sua utilização em sistemas sensores. Estes fenómenos ocorrem na superfície de interface entre metais e outros meios materiais, sendo capazes de afetar as propriedades em reflexão e transmissão de uma onda eletromagnética incidente (feixe luminoso), de uma forma que é fortemente dependente dos meios na proximidade do metal. Assim, a medição das propriedades do feixe luminoso, como por exemplo o comprimento de onda de ressonância com SPR, permite monitorizar esses meios. Numa segunda fase foi implementada a simulação destes modelos, em COMSOL Multiphysics, que permitia não só a obtenção dos espetros de transmissão dos fenómenos de ressonância de plasmões de superfície, mas também a obtenção das distribuições do campo elétrico e magnético em função das dimensões do sensor. O COMSOL permitiu também a obtenção das curvas do deslocamento do comprimento de onda ressonante, perante variações do índice de refração exterior, da espessura do metal, da espessura da bainha e da espessura de outro elemento de elevado índice de refração. A fase seguinte foi verificar que os resultados dos métodos teóricos para os diferentes parâmetros de estudo eram semelhantes aos resultados obtidos no COMSOL. Conclui-se que com este programa é possível criar novos sensores em fibra ótica, baseados em SPR, para melhorar e otimizar os parâmetros de ressonância e sensibilidade do sensor. A última fase do trabalho baseou-se na modelização de uma fibra cuja configuração seja tal que possa criar um pequeno efeito de antena e fazer com que parte da luz seja guiada para o exterior da fibra e possa interatuar com o meio externo para melhor sensibilidade.
Resumo:
This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.
Resumo:
“Immaginate di potervi rilassare a casa in una giornata d’estate tenendo le finestre aperte per lasciare passare la brezza ma senza essere disturbati dai rumori della città, oggi è possibile”. Quello che voglio fare attraverso questa tesi è di studiare la fattibilità per la realizzazione di una finestra che permetta il passaggio dell’aria ma non dei rumori. L’idea di questa particolare finestra silenziosa mi è stata fornita dallo studio fatto dal professor Sang-Hoon Kim del Mokpo National University maritime e dal professor Seong-Hyun Lee del Korea Institute of Machinery and Materials in Corea del Sud. Essi hanno utilizzato i metamateriali acustici per risolvere il problema dell’inquinamento sonoro in città. Queste finestre hanno il vantaggio di tenere i rumori fuori dalla nostra abitazione ma permettere il passaggio dell’aria attraverso dei fori aventi dimensioni e posizioni adeguate da garantire questo particolare fenomeno. I principi su cui si basano queste finestre sono: la diffrazione e i risonatori di Helmholtz, che analizzeremo nel dettaglio nei capitoli 1 e 2 di questa tesi. Dopo aver analizzato i due principi attraverso simulazione fatte mediante il programma COMSOL multiphysics, sono passata all’analisi della finestra vera e propria: ovvero alla realizzazione delle dimensioni adeguate dei risonatori di Helmholtz utilizzati, alle dimensioni dei rispettivi fori d’ingresso e alla combinazione di questi risonatori per ricavare la miglior finestra silenziosa, che trattenesse al suo esterno il maggior numero di dB.
Resumo:
Situado en el límite entre Ingeniería, Informática y Biología, la mecánica computacional de las neuronas aparece como un nuevo campo interdisciplinar que potencialmente puede ser capaz de abordar problemas clínicos desde una perspectiva diferente. Este campo es multiescala por naturaleza, yendo desde la nanoescala (como, por ejemplo, los dímeros de tubulina) a la macroescala (como, por ejemplo, el tejido cerebral), y tiene como objetivo abordar problemas que son complejos, y algunas veces imposibles, de estudiar con medios experimentales. La modelización computacional ha sido ampliamente empleada en aplicaciones Neurocientíficas tan diversas como el crecimiento neuronal o la propagación de los potenciales de acción compuestos. Sin embargo, en la mayoría de los enfoques de modelización hechos hasta ahora, la interacción entre la célula y el medio/estímulo que la rodea ha sido muy poco explorada. A pesar de la tremenda importancia de esa relación en algunos desafíos médicos—como, por ejemplo, lesiones traumáticas en el cerebro, cáncer, la enfermedad del Alzheimer—un puente que relacione las propiedades electrofisiológicas-químicas y mecánicas desde la escala molecular al nivel celular todavía no existe. Con ese objetivo, esta investigación propone un marco computacional multiescala particularizado para dos escenarios respresentativos: el crecimiento del axón y el acomplamiento electrofisiológicomecánico de las neuritas. En el primer caso, se explora la relación entre los constituyentes moleculares del axón durante su crecimiento y sus propiedades mecánicas resultantes, mientras que en el último, un estímulo mecánico provoca deficiencias funcionales a nivel celular como consecuencia de sus alteraciones electrofisiológicas-químicas. La modelización computacional empleada en este trabajo es el método de las diferencias finitas, y es implementada en un nuevo programa llamado Neurite. Aunque el método de los elementos finitos es también explorado en parte de esta investigación, el método de las diferencias finitas tiene la flexibilidad y versatilidad necesaria para implementar mode los biológicos, así como la simplicidad matemática para extenderlos a simulaciones a gran escala con un coste computacional bajo. Centrándose primero en el efecto de las propiedades electrofisiológicas-químicas sobre las propiedades mecánicas, una versión adaptada de Neurite es desarrollada para simular la polimerización de los microtúbulos en el crecimiento del axón y proporcionar las propiedades mecánicas como función de la ocupación de los microtúbulos. Después de calibrar el modelo de crecimiento del axón frente a resultados experimentales disponibles en la literatura, las características mecánicas pueden ser evaluadas durante la simulación. Las propiedades mecánicas del axón muestran variaciones dramáticas en la punta de éste, donde el cono de crecimiento soporta las señales químicas y mecánicas. Bansándose en el conocimiento ganado con el modelo de diferencias finitas, y con el objetivo de ir de 1D a 3D, este esquema preliminar pero de una naturaleza innovadora allana el camino a futuros estudios con el método de los elementos finitos. Centrándose finalmente en el efecto de las propiedades mecánicas sobre las propiedades electrofisiológicas- químicas, Neurite es empleado para relacionar las cargas mecánicas macroscópicas con las deformaciones y velocidades de deformación a escala microscópica, y simular la propagación de la señal eléctrica en las neuritas bajo carga mecánica. Las simulaciones fueron calibradas con resultados experimentales publicados en la literatura, proporcionando, por tanto, un modelo capaz de predecir las alteraciones de las funciones electrofisiológicas neuronales bajo cargas externas dañinas, y uniendo lesiones mecánicas con las correspondientes deficiencias funcionales. Para abordar simulaciones a gran escala, aunque otras arquitecturas avanzadas basadas en muchos núcleos integrados (MICs) fueron consideradas, los solvers explícito e implícito se implementaron en unidades de procesamiento central (CPU) y unidades de procesamiento gráfico (GPUs). Estudios de escalabilidad fueron llevados acabo para ambas implementaciones mostrando resultados prometedores para casos de simulaciones extremadamente grandes con GPUs. Esta tesis abre la vía para futuros modelos mecánicos con el objetivo de unir las propiedades electrofisiológicas-químicas con las propiedades mecánicas. El objetivo general es mejorar el conocimiento de las comunidades médicas y de bioingeniería sobre la mecánica de las neuronas y las deficiencias funcionales que aparecen de los daños producidos por traumatismos mecánicos, como lesiones traumáticas en el cerebro, o enfermedades neurodegenerativas como la enfermedad del Alzheimer. ABSTRACT Sitting at the interface between Engineering, Computer Science and Biology, Computational Neuron Mechanics appears as a new interdisciplinary field potentially able to tackle clinical problems from a new perspective. This field is multiscale by nature, ranging from the nanoscale (e.g., tubulin dimers) to the macroscale (e.g., brain tissue), and aims at tackling problems that are complex, and sometime impossible, to study through experimental means. Computational modeling has been widely used in different Neuroscience applications as diverse as neuronal growth or compound action potential propagation. However, in the majority of the modeling approaches done in this field to date, the interactions between the cell and its surrounding media/stimulus have been rarely explored. Despite of the tremendous importance of such relationship in several medical challenges—e.g., traumatic brain injury (TBI), cancer, Alzheimer’s disease (AD)—a bridge between electrophysiological-chemical and mechanical properties of neurons from the molecular scale to the cell level is still lacking. To this end, this research proposes a multiscale computational framework particularized for two representative scenarios: axon growth and electrophysiological-mechanical coupling of neurites. In the former case, the relation between the molecular constituents of the axon during its growth and its resulting mechanical properties is explored, whereas in the latter, a mechanical stimulus provokes functional deficits at cell level as a consequence of its electrophysiological-chemical alterations. The computational modeling approach chosen in this work is the finite difference method (FDM), and was implemented in a new program called Neurite. Although the finite element method (FEM) is also explored as part of this research, the FDM provides the necessary flexibility and versatility to implement biological models, as well as the mathematical simplicity to extend them to large scale simulations with a low computational cost. Focusing first on the effect of electrophysiological-chemical properties on the mechanical proper ties, an adaptation of Neurite was developed to simulate microtubule polymerization in axonal growth and provide the axon mechanical properties as a function of microtubule occupancy. After calibrating the axon growth model against experimental results available in the literature, the mechanical characteristics can be tracked during the simulation. The axon mechanical properties show dramatic variations at the tip of the axon, where the growth cone supports the chemical and mechanical signaling. Based on the knowledge gained from the FDM scheme, and in order to go from 1D to 3D, this preliminary yet novel scheme paves the road for future studies with FEM. Focusing then on the effect of mechanical properties on the electrophysiological-chemical properties, Neurite was used to relate macroscopic mechanical loading to microscopic strains and strain rates, and simulate the electrical signal propagation along neurites under mechanical loading. The simulations were calibrated against experimental results published in the literature, thus providing a model able to predict the alteration of neuronal electrophysiological function under external damaging load, and linking mechanical injuries to subsequent acute functional deficits. To undertake large scale simulations, although other state-of-the-art architectures based on many integrated cores (MICs) were considered, the explicit and implicit solvers were implemented for central processing units (CPUs) and graphics processing units (GPUs). Scalability studies were done for both implementations showing promising results for extremely large scale simulations with GPUs. This thesis opens the avenue for future mechanical modeling approaches aimed at linking electrophysiological- chemical properties to mechanical properties. Its overarching goal is to enhance the bioengineering and medical communities knowledge on neuronal mechanics and functional deficits arising from damages produced by direct mechanical insults, such as TBI, or neurodegenerative evolving illness, such as AD.
Resumo:
Metal casting is a process governed by the interaction of a range of physical phenomena. Most computational models of this process address only what are conventionally regarded as the primary phenomena – heat conduction and solidification. However, to predict other phenomena, such as porosity formation, requires modelling the interaction of the fluid flow, heat transfer, solidification and the development of stressdeformation in the solidified part of the casting. This paper will describe a modelling framework called PHYSICA[1] which has the capability to stimulate such multiphysical phenomena.
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
The use of unstructured mesh codes on parallel machines is one of the most effective ways to solve large computational mechanics problems. Completely general geometries and complex behaviour can be modelled and, in principle, the inherent sparsity of many such problems can be exploited to obtain excellent parallel efficiencies. However, unlike their structured counterparts, the problem of distributing the mesh across the memory of the machine, whilst minimising the amount of interprocessor communication, must be carefully addressed. This process is an overhead that is not incurred by a serial code, but is shown to rapidly computable at turn time and tailored for the machine being used.
Resumo:
Unstructured mesh based codes for the modelling of continuum physics phenomena have evolved to provide the facility to model complex interacting systems. Such codes have the potential to provide a high performance on parallel platforms for a small investment in programming. The critical parameters for success are to minimise changes to the code to allow for maintenance while providing high parallel efficiency, scalability to large numbers of processors and portability to a wide range of platforms. The paradigm of domain decomposition with message passing has for some time been demonstrated to provide a high level of efficiency, scalability and portability across shared and distributed memory systems without the need to re-author the code into a new language. This paper addresses these issues in the parallelisation of a complex three dimensional unstructured mesh Finite Volume multiphysics code and discusses the implications of automating the parallelisation process.