883 resultados para Multimodal retrieval


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes a rank aggregation framework for video multimodal geocoding. Textual and visual descriptions associated with videos are used to define ranked lists. These ranked lists are later combined, and the resulting ranked list is used to define appropriate locations for videos. An architecture that implements the proposed framework is designed. In this architecture, there are specific modules for each modality (e.g, textual and visual) that can be developed and evolved independently. Another component is a data fusion module responsible for combining seamlessly the ranked lists defined for each modality. We have validated the proposed framework in the context of the MediaEval 2012 Placing Task, whose objective is to automatically assign geographical coordinates to videos. Obtained results show how our multimodal approach improves the geocoding results when compared to methods that rely on a single modality (either textual or visual descriptors). We also show that the proposed multimodal approach yields comparable results to the best submissions to the Placing Task in 2012 using no extra information besides the available development/training data. Another contribution of this work is related to the proposal of a new effectiveness evaluation measure. The proposed measure is based on distance scores that summarize how effective a designed/tested approach is, considering its overall result for a test dataset. © 2013 Springer Science+Business Media New York.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Relevance feedback approaches have been established as an important tool for interactive search, enabling users to express their needs. However, in view of the growth of multimedia collections available, the user efforts required by these methods tend to increase as well, demanding approaches for reducing the need of user interactions. In this context, this paper proposes a semi-supervised learning algorithm for relevance feedback to be used in image retrieval tasks. The proposed semi-supervised algorithm aims at using both supervised and unsupervised approaches simultaneously. While a supervised step is performed using the information collected from the user feedback, an unsupervised step exploits the intrinsic dataset structure, which is represented in terms of ranked lists of images. Several experiments were conducted for different image retrieval tasks involving shape, color, and texture descriptors and different datasets. The proposed approach was also evaluated on multimodal retrieval tasks, considering visual and textual descriptors. Experimental results demonstrate the effectiveness of the proposed approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The size of online image datasets is constantly increasing. Considering an image dataset with millions of images, image retrieval becomes a seemingly intractable problem for exhaustive similarity search algorithms. Hashing methods, which encodes high-dimensional descriptors into compact binary strings, have become very popular because of their high efficiency in search and storage capacity. In the first part, we propose a multimodal retrieval method based on latent feature models. The procedure consists of a nonparametric Bayesian framework for learning underlying semantically meaningful abstract features in a multimodal dataset, a probabilistic retrieval model that allows cross-modal queries and an extension model for relevance feedback. In the second part, we focus on supervised hashing with kernels. We describe a flexible hashing procedure that treats binary codes and pairwise semantic similarity as latent and observed variables, respectively, in a probabilistic model based on Gaussian processes for binary classification. We present a scalable inference algorithm with the sparse pseudo-input Gaussian process (SPGP) model and distributed computing. In the last part, we define an incremental hashing strategy for dynamic databases where new images are added to the databases frequently. The method is based on a two-stage classification framework using binary and multi-class SVMs. The proposed method also enforces balance in binary codes by an imbalance penalty to obtain higher quality binary codes. We learn hash functions by an efficient algorithm where the NP-hard problem of finding optimal binary codes is solved via cyclic coordinate descent and SVMs are trained in a parallelized incremental manner. For modifications like adding images from an unseen class, we propose an incremental procedure for effective and efficient updates to the previous hash functions. Experiments on three large-scale image datasets demonstrate that the incremental strategy is capable of efficiently updating hash functions to the same retrieval performance as hashing from scratch.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel framework referred to as collaterally confirmed labelling (CCL) is proposed, aiming at localising the visual semantics to regions of interest in images with textual keywords. Both the primary image and collateral textual modalities are exploited in a mutually co-referencing and complementary fashion. The collateral content and context-based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix of the visual keywords. A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. We introduce a novel high-level visual content descriptor that is devised for performing semantic-based image classification and retrieval. The proposed image feature vector model is fundamentally underpinned by the CCL framework. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval, respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicate that the proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the participation of DAEDALUS at ImageCLEF 2011 Medical Retrieval task. We have focused on multimodal (or mixed) experiments that combine textual and visual retrieval. The main objective of our research has been to evaluate the effect on the medical retrieval process of the existence of an extended corpus that is annotated with the image type, associated to both the image itself and also to its textual description. For this purpose, an image classifier has been developed to tag each document with its class (1st level of the hierarchy: Radiology, Microscopy, Photograph, Graphic, Other) and subclass (2nd level: AN, CT, MR, etc.). For the textual-based experiments, several runs using different semantic expansion techniques have been performed. For the visual-based retrieval, different runs are defined by the corpus used in the retrieval process and the strategy for obtaining the class and/or subclass. The best results are achieved in runs that make use of the image subclass based on the classification of the sample images. Although different multimodal strategies have been submitted, none of them has shown to be able to provide results that are at least comparable to the ones achieved by the textual retrieval alone. We believe that we have been unable to find a metric for the assessment of the relevance of the results provided by the visual and textual processes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel framework for multimodal semantic-associative collateral image labelling, aiming at associating image regions with textual keywords, is described. Both the primary image and collateral textual modalities are exploited in a cooperative and complementary fashion. The collateral content and context based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix, of the visual keywords, A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. Finally, we use Self Organising Maps to examine the classification and retrieval effectiveness of the proposed high-level image feature vector model which is constructed based on the image labelling results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem. A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters. We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer. We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution. We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes. This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets. We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the proliferation of multimedia data and ever-growing requests for multimedia applications, there is an increasing need for efficient and effective indexing, storage and retrieval of multimedia data, such as graphics, images, animation, video, audio and text. Due to the special characteristics of the multimedia data, the Multimedia Database management Systems (MMDBMSs) have emerged and attracted great research attention in recent years. Though much research effort has been devoted to this area, it is still far from maturity and there exist many open issues. In this dissertation, with the focus of addressing three of the essential challenges in developing the MMDBMS, namely, semantic gap, perception subjectivity and data organization, a systematic and integrated framework is proposed with video database and image database serving as the testbed. In particular, the framework addresses these challenges separately yet coherently from three main aspects of a MMDBMS: multimedia data representation, indexing and retrieval. In terms of multimedia data representation, the key to address the semantic gap issue is to intelligently and automatically model the mid-level representation and/or semi-semantic descriptors besides the extraction of the low-level media features. The data organization challenge is mainly addressed by the aspect of media indexing where various levels of indexing are required to support the diverse query requirements. In particular, the focus of this study is to facilitate the high-level video indexing by proposing a multimodal event mining framework associated with temporal knowledge discovery approaches. With respect to the perception subjectivity issue, advanced techniques are proposed to support users' interaction and to effectively model users' perception from the feedback at both the image-level and object-level.