667 resultados para Multifocal contact lenses
Resumo:
Background: The aim was to evaluate the visual performance achieved with a new multifocal hybrid contact lens and to compare it with that obtained with two other currently available multifocal soft contact lenses. Methods: This pilot prospective comparative study comprised a total of 16 presbyopic eyes of eight patients ranging in age from 43 to 58 years. All patients were fitted with three different models of multifocal contact lens: Duette multifocal (SynergEyes), Air Optix AQUA multifocal (Alcon) and Biofinity multifocal (CooperVision). Fittings were performed randomly in each patient according to a random number sequence, with a wash-out period between fittings of seven days. At two weeks post-fitting, visual, photopic contrast sensitivity and ocular aberrometry were evaluated. Results: No statistically significant differences were found in distance and near visual acuity achieved with the three different types of multifocal contact lens (p ≥ 0.05). Likewise, no significant differences between lenses were found in the monocular and binocular defocus curve (p ≥ 0.10). Concerning contrast sensitivity, better monocular contrast sensitivities for 6, 12 and 18 cycles per degree were found with the Duette and Air Optix multifocal compared to Biofinity (p = 0.02). Binocularly, differences between lenses were not significant (p ≥ 0.27). Furthermore, trefoil aberration was significantly higher with Biofinity multifocal (p < 0.01) and Air Optix (p = 0.01) multifocal compared to Duette. Conclusions: The Duette multifocal hybrid contact lens seems to provide similar visual quality outcomes in presbyopic patients with low corneal astigmatism, when compared with other soft multifocal contact lenses. This preliminary result should be confirmed in studies with larger samples.
Resumo:
Purpose: Several studies have suggested accommodative lags may serve as a stimulus for myopic growth, and while a blurred foveal image is believed to the main stimulus for accommodation, spectral composition of the retinal image is also believed to influence accommodative accuracy. Of particular interest is how altering spectral lighting conditions influences accommodation in the presence of soft multifocal contact lenses, which are currently being used off-label for myopia control. Methods: Accommodative responses were assessed using a Grand Seiko WAM-5500 autorefractor for four target distances: 25, 33, 50, and 100cm for 30 young adult subjects (14 myopic, 16 emmetropic; mean refractive errors (±SD, D) -4.22±2.04 and -0.15±0.67 respectively). Measurements were obtained with four different soft contact lenses, Single vision distance (SVD), Single vision near (SVN), Centre-Near (CN) and Centre-Distance (CD) (+1.50 add), and three different lighting conditions: red (peak λ 632nm), blue (peak λ 460nm), and white (peak λ 560nm). Corrections for chromatic differences in refraction were made prior to calculating accommodative errors. Results: The size of accommodative errors was significantly affected by lens design (p<0.001), lighting (p=0.027), and target distance (p=0.009). Mean accommodative errors were significantly larger with the SV lenses compared to the CD and CN designs (p<0.001). Errors were also significantly larger under blue light compared to white (p=0.004) and a significant interaction noted between lens design and lighting (p<0.001). Blue light generally decreased accommodative lags and increased accommodative leads relative to white and red light, the opposite was true of red light (p≤0.001). Lens design also significantly influenced direction of accommodative error (i.e. lag or lead) (p<0.001). Interactions with or between refractive groups were not found to be statistically significant for either the magnitude or direction of accommodative error (p>0.05 for all). Conclusions: Accuracy of accommodation is affected by both lens design and by wavelength of lighting. These accommodative lag data lend some support to recent speculation about the potential therapeutic value of lighting with a spectral bias towards blue during near work for myopia, although such treatment effects are likely to be more subtle under broad compared to the narrow spectrum lighting conditions used here.
Resumo:
Purpose: To evaluate the impact of eye and head rotation in the measurement of peripheral refraction with an open-field autorefractometer in myopic eyes wearing two different center-distance designs of multifocal contact lenses (MFCLs). Methods: Nineteen right eyes from 19 myopic patients (average central M ± SD = −2.67 ± 1.66 D) aged 20–27 years (mean ± SD = 23.2 ± 3.3 years) were evaluated using a Grand-Seiko autorefractometer. Patients were fitted with one multifocal aspheric center-distance contact lens (Biofinity Multifocal D®) and with one multi-concentric MFCL (Acuvue Oasys for Presbyopia). Axial and peripheral refraction were evaluated by eye rotation and by head rotation under naked eye condition and with each MFCL fitted randomly and in independent sessions. Results: For the naked eye, refractive pattern (M, J0 and J45) across the central 60◦ of the horizontal visual field values did not show significant changes measured by rotating the eye or rotating the head (p > 0.05). Similar results were obtained wearing the Biofinity D, for both testing methods, no obtaining significant differences to M, J0 and J45 values (p > 0.05). For Acuvue Oasys for presbyopia, also no differences were found when comparing measurements obtained by eye and head rotation (p > 0.05). Multivariate analysis did not showed a significant interaction between testing method and lens type neither with measuring locations (MANOVA, p > 0.05). There were significant differences in M and J0 values between naked eyes and each MFCL. Conclusion: Measurements of peripheral refraction by rotating the eye or rotating the head in myopic patients wearing dominant design or multi-concentric multifocal silicone hydrogel contact lens are comparable.
Resumo:
Presbyopia is a consequence of ageing and is therefore increasing inprevalence due to an increase in the ageing population. Of the many methods available to manage presbyopia, the use of contact lenses is indeed a tried and tested reversible option for those wishing to be spectacle free. Contact lens options to correct presbyopia include multifocal contact lenses and monovision.Several options have been available for many years with available guides to help choose multifocal contact lenses. However there is no comprehensive way to help the practitioner selecting the best option for an individual. An examination of the simplest way of predicting the most suitable multifocal lens for a patient will only enhance and add to the current evidence available. The purpose of the study was to determine the current use of presbyopic correction modalities in an optometric practice population in the UK and to evaluate and compare the optical performance of four silicone hydrogel soft multifocal contact lenses and to compare multifocal performance with contact lens monovision. The presbyopic practice cohort principal forms of refractive correction were distance spectacles (with near and intermediate vision providedby a variety of other forms of correction), varifocal spectacles and unaided distance with reading spectacles, with few patients wearing contact lenses as their primary correction modality. The results of the multifocal contact lens randomised controlled trial showed that there were only minor differences in corneal physiology between the lens options. Visual acuity differences were observed for distance targets, but only for low contrast letters and under mesopic lighting conditions. At closer distances between 20cm and 67cm, the defocus curves demonstrated that there were significant differences in acuity between lens designs (p < 0.001) and there was an interaction between the lens design and the level of defocus (p < 0.001). None of the lenses showed a clear near addition, perhaps due to their more aspheric rather than zoned design. As expected, stereoacuity was reduced with monovision compared with the multifocal contact lens designs, although there were some differences between the multifocal lens designs (p < 0.05). Reading speed did not differ between lens designs (F = 1.082, p = 0.368), whereas there was a significant difference in critical print size (F = 7.543, p < 0.001). Glare was quantified with a novel halometer and halo size was found to significantly differ between lenses(F = 4.101, p = 0.004). The rating of iPhone image clarity was significantly different between presbyopic corrections (p = 0.002) as was the Near Acuity Visual Questionnaire (NAVQ) rating of near performance (F = 3.730, p = 0.007).The pupil size did not alter with contact lens design (F = 1.614, p = 0.175), but was larger in the dominant eye (F = 5.489, p = 0.025). Pupil decentration relative to the optical axis did not alter with contact lens design (F = 0.777, p =0.542), but was also greater in the dominant eye (F = 9.917, p = 0.003). It was interesting to note that there was no difference in spherical aberrations induced between the contact lens designs (p > 0.05), with eye dominance (p > 0.05) oroptical component (ocular, corneal or internal: p > 0.05). In terms of subjective patient lens preference, 10 patients preferred monovision,12 Biofinity multifocal lens, 7 Purevision 2 for Presbyopia, 4 AirOptix multifocal and 2 Oasys multifocal contact lenses. However, there were no differences in demographic factors relating to lifestyle or personality, or physiological characteristics such as pupil size or ocular aberrations as measured at baseline,which would allow a practitioner to identify which lens modality the patient would prefer. In terms of the performance of patients with their preferred lens, it emerged that Biofinity multifocal lens preferring patients had a better high contrast acuity under photopic conditions, maintained their reading speed at smaller print sizes and subjectively rated iPhone clarity as better with this lens compared with the other lens designs trialled. Patients who preferred monovision had a lower acuity across a range of distances and a larger area of glare than those patients preferring other lens designs that was unexplained by the clinical metrics measured. However, it seemed that a complex interaction of aberrations may drive lens preference. New clinical tests or more diverse lens designs which may allow practitioners to prescribe patients the presbyopic contact lens option that will work best for them first time remains a hope for the future.
Resumo:
Purpose: Higher myopic refractive errors are associated with serious ocular complications that can put visual function at risk. There is respective interest in slowing and if possible stopping myopia progression before it reaches a level associated with increased risk of secondary pathology. The purpose of this report was to review our understanding of the rationale(s) and success of contact lenses (CLs) used to reduce myopia progression. Methods: A review commenced by searching the PubMed database. The inclusion criteria stipulated publications of clinical trials evaluating the efficacy of CLs in regulating myopia progression based on the primary endpoint of changes in axial length measurements and published in peerreviewed journals. Other publications from conference proceedings or patents were exceptionally considered when no peer-review articles were available. Results: The mechanisms that presently support myopia regulation with CLs are based on the change of relative peripheral defocus and changing the foveal image quality signal to potentially interfere with the accommodative system. Ten clinical trials addressing myopia regulation with CLs were reviewed, including corneal refractive therapy (orthokeratology), peripheral gradient lenses, and bifocal (dual-focus) and multifocal lenses. Conclusions: CLs were reported to be well accepted, consistent, and safe methods to address myopia regulation in children. Corneal refractive therapy (orthokeratology) is so far the method with the largest demonstrated efficacy in myopia regulation across different ethnic groups. However, factors such as patient convenience, the degree of initial myopia, and non-CL treatments may also be considered. The combination of different strategies (i.e., central defocus, peripheral defocus, spectral filters, pharmaceutical delivery, and active lens-borne illumination) in a single device will present further testable hypotheses exploring how different mechanisms can reinforce or compete with each other to improve or reduce myopia regulation with CLs.
Resumo:
Purpose. To compare visual function with the Bausch & Lomb PureVision multifocal contact lens to monovision with PureVision single vision contact lenses. Methods. Twenty presbyopic subjects were fitted with either the PureVision multifocal contact lens or monovision with PureVision singlevision lenses. Aftera 1-month trial, the following assessments of visual function were made: (a) distance, intermediate, and near visual acuity (VA); (b) reading ability; (c) distance and near contrast sensitivity function (CSF); (d) near range of clear vision; (e) stereoacuity; and (f) subjective evaluation of near vision ability with a standardized questionnaire. Subjects were then refitted with the alternative correction and the procedure was repeated. All measurements were compared between the two corrections, whereas the ``low addition'' multifocal lens was also compared with the ``high addition'' alternative. Results. Distance and near VA were significantly better with monovision than with the multifocal option (p < 0.05). Intermediate VA (p = 0.13) was similar with both corrections, whereas there was also no significant difference in distance and near CSF (p = 0.29 on both occasions). Reading speeds (p = 0.48) and the critical print size (p = 0.90) were not significantly different between the two contact lens corrections, but stereoacuity (p < 0.01) and the near range of clear vision (p < 0.05) were significantly better with the multifocal option than with monovision. Subjective assessment of near ability was similar for both types of contact lens (p = 0.52). The high addition multifocal lens produced significantly poorer distance and near CSF, near VA, and critical print size compared with the low addition alternative. Conclusions. Monovision performed better than a center-near aspheric simultaneous vision multifocal contact lens of the same material for distance and near VA only. The multifocal option provides better stereoacuity and near range of clear vision, with little differences in CSF, so a better balance of real-world visual function may be achieved due to minimal binocular disruption. (Optom Vis Sci 2009;86:98-105)
Resumo:
PURPOSE: To assess the performance of four commercially available silicone hydrogel multifocal monthly contact lens designs against monovision. METHODS: A double-masked randomized crossover trial of Air Optix Aqua multifocal, PureVision 2 for Presbyopia, Acuvue OASYS for Presbyopia, Biofinity multifocal, and monovision with Biofinity contact lenses was conducted on 35 presbyopes (54.3 ± 6.2 years). After 4 weeks of wear, visual performance was quantified by high- and low-contrast visual acuity under photopic and mesopic conditions, reading speed, defocus curves, stereopsis, halometry, aberrometry, Near Activity Visual Questionnaire rating, and subjective quality of vision scoring. Bulbar, limbal, and palpebral hyperemia and corneal staining were graded to monitor the impact of each contact lens on ocular physiology. RESULTS: High-contrast photopic visual acuity (p = 0.102), reading speed (F = 1.082, p = 0.368), and aberrometry (F = 0.855, p = 0.493) were not significantly different between presbyopic lens options. Defocus curve profiles (p <0.001), stereopsis (p <0.001), halometry (F = 4.101, p = 0.004), Near Activity Visual Questionnaire (F = 3.730, p = 0.007), quality of vision (p = 0.002), bulbar hyperemia (p = 0.020), and palpebral hyperemia (p = 0.012) differed significantly between lens types, with the Biofinity multifocal lens design principal (center-distance lens was fitted to the dominant eye and a center-near lens to the nondominant eye) typically outperforming the other lenses. CONCLUSIONS: Although ocular aberration variation between individuals largely masks the differences in optics between current multifocal contact lens designs, certain design strategies can outperform monovision, even in early presbyopes.
Resumo:
Purpose: To evaluate wavefront performance and modulation transfer function (MTF) in the human eye aft er the implantation of diffractive or refractive multifocal intraocular lenses (IOLs). Materials and Methods: This was a prospective, interventional, comparative, nonrandomized clinical study. Uncorrected distance and near visual acuity, and wavefront analysis including MTF curves (iTrace aberrometer, Tracey Technologies, Houston, TX, USA) were measured in 60 patients aft er bilateral IOL implantation with 6 months of follow-up. Forty eyes received the diffractive ReSTOR (Alcon), 40 eyes received the refractive ReZoom (Advanced Medical Optics) and 40 eyes, the Tecnis ZM900 (Advanced Medical Optics). The comparison of MTF and aberration between the intraocular lenses was performed using analysis of variance (ANOVA), followed by the Dunn test when necessary. Results: The mean uncorrected distance visual acuity was similar in all three groups of multifocal IOLs. The ReSTOR group provided better uncorrected near visual acuity than the ReZoom group (P < 0.001), but similar to the Tecnis group. Spherical aberration was significantly higher in the ReZoom group (P = 0.007). Similar MTF curves were found for the aspheric multifocal IOL Tecnis and the spheric multifocal IOL ReSTOR, and both performed better than the multifocal IOL ReZoom in a 5 mm pupil (P < 0.001 at all spatial frequencies). Conclusions: Diffractive IOLs studied presented similar MTF curves for a 5 mm pupil diameter. Both diffractive IOLs showed similar spherical aberration, which was significantly better with the full-diffractive IOL Tecnis than with the refractive IOL ReZoom.
Resumo:
PURPOSE To compare reading ability after cataract surgery and bilateral implantation of multifocal intraocular lenses (IOLs) with a +3 00 diopter (D) addition (add) or a +4 00 D add SETTING Department of Ophthalmology, University of Sao Paulo, Sao Paulo, Brazil DESIGN Prospective comparative study METHODS Patients scheduled for cataract surgery were randomly assigned to bilateral implantation of an aspheric AcrySof ReSTOR multifocal IOL with a +3 00 diopter (D) addition (add) or a +4 00 D add The reading speed, critical print size, and reading acuity were measured binocularly with best correction using MNREAD acuity charts 6 months after surgery Patients were tested with the chart at the best patient-preferred reading distance and at 40 cm Binocular uncorrected and best distance-corrected visual acuities at far and near were also measured RESULTS The study enrolled 32 patients At the best reading distance the results were similar between the 2 IOL groups in all reading parameters When tested at 40 cm, reading speed at all print sizes from 03 to 00 (all P< 001), critical print size (P< 001) and reading acuity (P = 014) were statistically significantly better in the +3 00 D IOL group than in the +4 00 DIOL group Uncorrected and corrected visual acuities at far and near were similar between the 2 groups CONCLUSION Although the 2 IOL groups had similar performance in reading parameters, patients had to adjust to their best reading distance The +3 00 D IOL performed better than the +4 00 D IOL at 40 cm
Resumo:
PURPOSE: To evaluate the advantages and disadvantages of the new low-addition (add) (+3.00 diopter [D]) ReSTOR multifocal IOL compared with the preceding ReSTOR model with +4.00 D add. SETTING: University Eye Hospital, Tuebingen, Germany. DESIGN: Comparative case series. METHODS: Patients with a +3.00 D or +4.00 D add multifocal IOL were examined for uncorrected and distance-corrected visual acuity at distance, intermediate, and near. A defocus profile was assessed, individual reading distance and the distance for lowest intermediate visual acuity were determined. Patient satisfaction was evaluated with a standardized questionnaire. Contrast sensitivity was tested under mesopic and photopic conditions. RESULTS: Uncorrected and distance-corrected intermediate visual acuities were statistically significantly better in the +3.00 D add group (24 eyes) than in the +4.00 D add group (30 eyes); distance and near visual acuities were not different between groups. The defocus profile significantly varied between groups. The +4.00 D add group had a closer reading distance (33.0 cm) than the +3.00 D add group (43.5 cm), a closer point of lowest intermediate visual acuity (65.8 cm versus 86.9 cm) and worse lowest intermediate visual acuity (20/59 +/- 4.5 letters [SD] versus 20/48 +/- 5.5 letters). Thus, patients in the +3.00 D add group reported being more satisfied with intermediate visual acuity. The +3.00 D add group reported more glare but less halos than the +4.00 D add group; contrast sensitivity was not different. CONCLUSION: The lower addition resulted in a narrower defocus profile, a farther reading distance, and better intermediate visual acuity and thus increased patient satisfaction.
Resumo:
METHODS: Refractive lens exchange was performed with implantation of an AT Lisa 839M (trifocal) or 909MP (bifocal toric) IOL, the latter if corneal astigmatism was more than 0.75 diopter (D). The postoperative visual and refractive outcomes were evaluated. A prototype light-distortion analyzer was used to quantify the postoperative light-distortion indices. A control group of eyes in which a Tecnis ZCB00 1-piece monofocal IOL was implanted had the same examinations. RESULTS: A trifocal or bifocal toric IOL was implanted in 66 eyes. The control IOL was implanted in 18 eyes. All 3 groups obtained a significant improvement in uncorrected distance visual acuity (UDVA) (P < .001) and corrected distance visual acuity (CDVA) (P Z .001). The mean uncorrected near visual acuity (UNVA) was 0.123 logMAR with the trifocal IOL and 0.130 logMAR with the bifocal toric IOL. The residual refractive cylinder was less than 1.00 D in 86.7% of cases with the toric IOL. The mean light-distortion index was significantly higher in the multifocal IOL groups than in the monofocal group (P < .001), although no correlation was found between the light-distortion index and CDVA. CONCLUSIONS: The multifocal IOLs provided excellent UDVA and functional UNVA despite increased light-distortion indices. The light-distortion analyzer reliably quantified a subjective component of vision distinct from visual acuity; it may become a useful adjunct in the evaluation of visual quality obtained with multifocal IOLs.
Resumo:
Dissertação de mestrado em Genética Molecular
Resumo:
Résumé Introduction : La conjonctivite giganto-papillaire chez des patients porteurs de lentilles de contact survient lors d'une intolérance et/ou d'une allergie aux lentilles de contact. L'éotaxine est un CC chémokine produisant un puissant effet chémotactique sur les éosinophiles, qui sont impliqués dans les allergies. Le but de cette étude est de mesurer le taux d'éotaxine dans les larmes de patients porteurs de lentilles de contact et de le comparer à celui de sujets normaux. Les taux d'éotaxine sont également corrélés avec le degré de conjonctivite giganto-papillaire. Méthode : Environ 10 Ill de larmes ont été collectés avec une rnicropipette en verre chez 16 patients porteurs de lentilles de contact et chez 10 volontaires normaux. La conjonctivite giganto-papillaire a été évaluée selon une échelle de 0 à 4 en référence à des images photographiques de la paupière supérieure réalisées à la lampe à fente. La concentration de l'éotaxine dans les larmes a été mesurée par un ELISA utilisant un anticorps d'éotaxine de souris dirigé contre l'anticorps humain. Pour l'analyse statistique des résultats, le test de Wilcox/Kruskal-Wallis a été utilisé. Résultats : La concentration moyenne d'éotaxine était de 2698 +233 (SEM) pg/ml chez les patients porteurs de lentilles de contact et de 1498 139 pg/ml chez les sujets normaux. La différence était statistiquement significative avec P = 0.0004. Le score moyen des papilles était de 1.75 ±0.19 chez les patients porteurs de lentilles de contact et de 0.2 +0.13 chez les sujets normaux (P <0.0001). Le grading des papilles a pu être mis en relation avec le taux d'éotaxine dans les larmes (R2- 0.6562 avec P <0.0001). Conclusion : Une augmentation du taux d'éotaxine dans les larmes a été mesurée chez les patients porteurs de lentilles de contact. Les taux d'éotaxine ont été corrélés avec la sévérité de la conjonctivite giganto-papillaire. Ces données suggèrent que l'éotaxine pourrait jouer un rôle important dans la formation des papilles. Abstract : Purpose: Giant papillary conjunctivitis in patients wearing contact lenses occurs after intolerance and/or allergy to contact lenses. Eotaxin is a CC chemokine with a potent and specific chemotactic effect for eosinophils, which are involved in allergies. The purpose of this study is to measure the eotaxin levels in tears of patients wearing contact lenses and in normal subjects. Eotaxin levels were also correlated with the grade of giant papillary conjunctivitis. Methods: Around 10µL of tears were collected with glass capillaries in 16 patients wearing contact lenses and in 10 normal volunteers. Giant papillary conjunctivitis was graded from 0 to 4 by reference to standard slit-lamp photographs of the superior tarsal conjunctiva. Eotaxin concentration in tears was measured by ELSA using mouse anti-human eotaxin monoclonal antibodies. For the statistical analysis of the results, the paired Wilcoxon/Kruskai-Wallis test was used. Results: The mean concentration of eotaxin was 2698 ± 233 (SEM) pg/mL in patients wearing contact lenses and 1498 ± 139 pg/mL normal subjects. The difference was statistically significant (P =0.0004). The mean score of papilla grade was 1.75 ± 0.19 in patients wearing contact lenses and 01 ± 0.13 in normal subjects (P < 0.0001). Papilla grade could be correlated to the eotaxin level in tears (R2 = 0.6562 and P< 0.0001), Conclusion: An increase of eotaxin levels in tears was measured in patients wearing contact lenses. Eotaxin levels correlated with the severity of giant papillary conjunctivitis. These data suggest that eotaxin could play a role in papilla formation.
Resumo:
BACKGROUND: Eotaxin-1 (CCL11) is a potent eosinophil chemotactic and activating peptide that may be implicated in the pathogenesis of chronic allergic eye disease and has been associated with the wearing of contact lenses (CL) in patients with contact lens papillary conjunctivitis (CLPC). The purpose of this study was to study eotaxin-1 expression in the tears of long-term CL wearers. PATIENTS AND METHODS: Tears were collected with glass capillaries from 15 patients (2 male, 13 female) with various degree of CLPC at 2-year intervals. CLPC severity was graded from 0 to 4 with reference to standard slit-lamp photographs of the superior tarsal conjunctiva. The eotaxin-1 level in the tears was measured by an ELISA, using mouse anti-human eotaxin monoclonal antibodies. RESULTS: The mean age was 32.5 ± 13.3 years (range: 17 - 69 years). The mean interval between the tear collections was 30 ± 4.8 months. The mean concentration of eotaxin was 2150 ± 477 pg/mL and 2486 ± 810 pg/mL for the first and second series, respectively. The difference was not statistically significant (paired Wilcoxon/Kruskal-Wallis, p = 0.803). The mean score of papilla grade was 1.26 ± 0.18 for the first sample and 1.40 ± 0.19 two years later. There was no significant difference of grading between the two time periods (paired Wilcoxon/Kruskal-Wallis, p = 0.751). CONCLUSIONS: the eotaxin-1 level remains up-regulated over a long time period in patients wearing CL, most of them with chronic CLPC. Eotaxin may play a role in the pathogenesis of contact lens intolerance.