904 resultados para Multiespectral images
Resumo:
The present work evaluated urban forest indicators, acquired through airborne high-resolution multiespectral images, on the quality of the urban design and its vegetative fraction, in special its trees, in nine neighborhoods of Piracicaba, SP. There were made supervised classifications for characterization of intra-urban elements and the proportions obtained, as exposed soil, tree cover, lawns, asphalt, concrete pavements and roofs. They were studied for the measurement of the urban forest in each place. These variables were related to each other, as well as with the independent variables: population density, people with more than fifteen years of study and family heads with income above twenty minimum wages, obtained through population census. Through the analysis of linear regression variables were identified for intra-urban areas evaluation. Correlations were made and linear regressions among the data obtained from the image and among the proposed indicators. Negative correlations were obtained among population density and arboreal covering and the evaluated indices, in accordance with the predicted in the literature. Composite indicators are proposed, as: the proportion between arboreous space on waterproof space (PAW) and the proportion between arboreous space on building space (PAB). It is concluded by the possibility of the use of those indicators for evaluation of the urban forest and definition of priorities in the execution of ordinances to the improvement of the urban forestry, being prioritized the application of resources in the most lacking neighborhoods.
Resumo:
The great diversity of materials that characterizes the urban environment determines a structure of mixed classes in a classification of multiespectral images. In that sense, it is important to define an appropriate classification system using a non parametric classifier, that allows incorporating non spectral (such as texture) data to the process. They also allow analyzing the uncertainty associated to each class from the output alues of the network calculated in relation to each class. Considering these properties, an experiment was carried out. This experiment consisted in the application of an Artificial Neural Network aiming at the classification of the urban land cover of Presidente Prudente and the analysis of the uncertainty in the representation of the mapped thematic classes. The results showed that it is possible to discriminate the variations in the urban land cover through the application of an Artificial Neural Network. It was also possible to visualize the spatial variation of the uncertainty in the attribution of classes of urban land cover from the generated representations. The class characterized by a defined pattern as intermediary related to the impermeability of the urban soil presented larger ambiguity degree and, therefore, larger mixture.
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este proyecto tiene como objetivo ampliar, mediante la caracterización espectral y multitemporal por técnicas de teledetección y medidas in situ, el estudio del corredor fluvial para el río Tinguiririca en Chile. Consiste en estudiar la cobertura del terreno, evaluar su dinámica de cambio e identificar zonas de acumulación de materiales de alteración hidrotermal arcillosos y óxidos de hierro, presentes en la cuenca durante las últimas tres décadas que puedan explicar su evolución temporal. Se pretenden obtener nuevas variables geoespaciales que ayuden a comprender las posibles causas de variación del cauce, elaborando cartografía para una posterior fase de investigación mediante modelización hidráulica que vaya dirigida a paliar el impacto de las riadas periódicas. Para ello, se han empleado, tratado y explotado imágenes de los sensores remotos TM, ETM+, OLI y TIRS tomadas en un período comprendido entre 1993 y 2014, que se han contrastado con perfiles batimétricos, datos GPS, supervisión y muestreo tomados sobre el terreno. Se ha realizado así mismo, un estudio prospectivo de caso sobre cómo afectarían las variables obtenidas por teledetección a la modelización hidráulica, en particular, la rugosidad, proponiendo un marco metodológico global de integración de las tres técnicas: sistemas de información geográfica, teledetección y modelización hidráulica. ABSTRACT This project aims to develop the study of Tinguiririca River corridor in Chile, through spectral characterization and multitemporal remote sensing and other measurements. This involves studying the land cover, its dynamic changes and identifies clayey materials and iron oxides accumulations of hydrothermal alteration, present in the basin during the last three decades to explain their evolution. It aims to obtain new geospatial variables in order to understand the possible causes of channel variation, developing mapping to a later research stage using hydraulic modeling so as to mitigate the impact of periodic floods. In this way, it has used processed and exploited images of TM, ETM +, OLI and TIRS remote sensing, taken in a period between 1993 and 2014 which it has been compared with bathymetric profiles, GPS, monitoring and sampling data collected in the field . It has done a prospective study about the variables obtained condition on hydraulic modeling, roughness in particular, proposing IX a complete methodological framework about the integration of the three techniques: geographic information systems, remote sensing and modeling hydraulics
Resumo:
Uno de los problemas más importantes a los que se enfrenta nuestra sociedad es el de la degradación del medioambiente por la emisión de gases de efecto invernadero. La captura de CO2 en los puntos de emisión y su enterramiento mediante inyección en reservorios geológicos profundos se plantea como una solución hasta que a medio o largo plazo pueda ser mitigada la actual dependencia de la quema de combustibles fósiles. Pero la estabilidad de esos reservorios debe ser monitorizada adecuadamente. En esta tesis se ha estudiado el problema de la detección de fugas de CO2 en un análogo natural de un emplazamiento de almacenamiento profundo a través del análisis de imágenes de satélite multiespectrales. El análogo utilizado ha sido la zona de Campo de Calatrava (Ciudad Real, España), donde, por efecto de la actividad volcánica remanente, aún se pueden encontrar numerosos puntos de emisión de CO2. Se han caracterizado los puntos de emisión de CO2 identificándose dos tipologías con características y manifestaciones claramente diferenciadas: puntos de emisión húmeda o hervideros, y puntos de emisión seca o fumarolas. Para el estudio se han utilizado índices de vegetación y su relación de éstos con los contenidos atmosféricos de CO2. Se han utilizado imágenes multiespectrales de los satélites QuickBird y WorldView‐2. Se ha realizado una preselección de doce índices de vegetación especialmente adecuados para la detección de puntos de emisión de CO2. Mediante análisis y comparación de imágenes de índices de vegetación sobre puntos de emisión conocidos se ha seleccionado los cinco índices con mayor sensibilidad frente al fenómeno. Atendiendo a los principales factores condicionantes de la aparición de nuevos puntos de emisión de CO2 se ha realizado sobre las imágenes de índices de vegetación una predicción de nuevos puntos de emisión. Entre los puntos candidato se han encontrado tres nuevos puntos de emisión de CO2 no descritos previamente en la bibliografía. ABSTRACT One of the most important issues facing our society is the degradation of the environment caused by the emission of greenhouse gases. Capturing CO2 emissions, injection and burial in deep geological reservoirs is presented as a solution until the medium or long term, when the problem of the current dependence on fossil fuels burning can be mitigated. But the stability of these reservoirs should be properly monitored. In this work we study the problem of detecting CO2 leakage in a natural analogue of a deep storage site through analysis of multispectral satellite imagery. The analogue used is in the Campo de Calatrava (Ciudad Real, Spain) where, due to the remaining volcanic activity, it can still be found numerous CO2 emission points. CO2 emission points have been characterized identifying two types having distinct characteristics and effects: wet emission points or hotbeds, and dry emission points or fumaroles. For this study it has been used vegetation indices and its relationship with atmospheric CO2 contents. It has been used multispectral images from QuickBird and WorldView‐2 satellites. It has been done a preselection of twelve vegetation indices especially suitable for the detection of CO2 emission points. Using analysis and comparison of vegetation index images on real emission points it has been selected the five indexes with greater sensitivity to this phenomenon. Based upon the main factors of the emergence of new CO2 emission points it has been made a prediction of new emission points over the vegetation index images. Among the candidate points it has been found three new CO2 emission points not previously described in the literature.