990 resultados para Multidimensional data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visualization of high-dimensional data requires a mapping to a visual space. Whenever the goal is to preserve similarity relations a frequent strategy is to use 2D projections, which afford intuitive interactive exploration, e. g., by users locating and selecting groups and gradually drilling down to individual objects. In this paper, we propose a framework for projecting high-dimensional data to 3D visual spaces, based on a generalization of the Least-Square Projection (LSP). We compare projections to 2D and 3D visual spaces both quantitatively and through a user study considering certain exploration tasks. The quantitative analysis confirms that 3D projections outperform 2D projections in terms of precision. The user study indicates that certain tasks can be more reliably and confidently answered with 3D projections. Nonetheless, as 3D projections are displayed on 2D screens, interaction is more difficult. Therefore, we incorporate suitable interaction functionalities into a framework that supports 3D transformations, predefined optimal 2D views, coordinated 2D and 3D views, and hierarchical 3D cluster definition and exploration. For visually encoding data clusters in a 3D setup, we employ color coding of projected data points as well as four types of surface renderings. A second user study evaluates the suitability of these visual encodings. Several examples illustrate the framework`s applicability for both visual exploration of multidimensional abstract (non-spatial) data as well as the feature space of multi-variate spatial data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Content-based image retrieval is still a challenging issue due to the inherent complexity of images and choice of the most discriminant descriptors. Recent developments in the field have introduced multidimensional projections to burst accuracy in the retrieval process, but many issues such as introduction of pattern recognition tasks and deeper user intervention to assist the process of choosing the most discriminant features still remain unaddressed. In this paper, we present a novel framework to CBIR that combines pattern recognition tasks, class-specific metrics, and multidimensional projection to devise an effective and interactive image retrieval system. User interaction plays an essential role in the computation of the final multidimensional projection from which image retrieval will be attained. Results have shown that the proposed approach outperforms existing methods, turning out to be a very attractive alternative for managing image data sets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: In many experimental pipelines, clustering of multidimensional biological datasets is used to detect hidden structures in unlabelled input data. Taverna is a popular workflow management system that is used to design and execute scientific workflows and aid in silico experimentation. The availability of fast unsupervised methods for clustering and visualization in the Taverna platform is important to support a data-driven scientific discovery in complex and explorative bioinformatics applications. Results: This work presents a Taverna plugin, the Biological Data Interactive Clustering Explorer (BioDICE), that performs clustering of high-dimensional biological data and provides a nonlinear, topology preserving projection for the visualization of the input data and their similarities. The core algorithm in the BioDICE plugin is Fast Learning Self Organizing Map (FLSOM), which is an improved variant of the Self Organizing Map (SOM) algorithm. The plugin generates an interactive 2D map that allows the visual exploration of multidimensional data and the identification of groups of similar objects. The effectiveness of the plugin is demonstrated on a case study related to chemical compounds. Conclusions: The number and variety of available tools and its extensibility have made Taverna a popular choice for the development of scientific data workflows. This work presents a novel plugin, BioDICE, which adds a data-driven knowledge discovery component to Taverna. BioDICE provides an effective and powerful clustering tool, which can be adopted for the explorative analysis of biological datasets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In Information Visualization, adding and removing data elements can strongly impact the underlying visual space. We have developed an inherently incremental technique (incBoard) that maintains a coherent disposition of elements from a dynamic multidimensional data set on a 2D grid as the set changes. Here, we introduce a novel layout that uses pairwise similarity from grid neighbors, as defined in incBoard, to reposition elements on the visual space, free from constraints imposed by the grid. The board continues to be updated and can be displayed alongside the new space. As similar items are placed together, while dissimilar neighbors are moved apart, it supports users in the identification of clusters and subsets of related elements. Densely populated areas identified in the incSpace can be efficiently explored with the corresponding incBoard visualization, which is not susceptible to occlusion. The solution remains inherently incremental and maintains a coherent disposition of elements, even for fully renewed sets. The algorithm considers relative positions for the initial placement of elements, and raw dissimilarity to fine tune the visualization. It has low computational cost, with complexity depending only on the size of the currently viewed subset, V. Thus, a data set of size N can be sequentially displayed in O(N) time, reaching O(N (2)) only if the complete set is simultaneously displayed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The problem of projecting multidimensional data into lower dimensions has been pursued by many researchers due to its potential application to data analyses of various kinds. This paper presents a novel multidimensional projection technique based on least square approximations. The approximations compute the coordinates of a set of projected points based on the coordinates of a reduced number of control points with defined geometry. We name the technique Least Square Projections ( LSP). From an initial projection of the control points, LSP defines the positioning of their neighboring points through a numerical solution that aims at preserving a similarity relationship between the points given by a metric in mD. In order to perform the projection, a small number of distance calculations are necessary, and no repositioning of the points is required to obtain a final solution with satisfactory precision. The results show the capability of the technique to form groups of points by degree of similarity in 2D. We illustrate that capability through its application to mapping collections of textual documents from varied sources, a strategic yet difficult application. LSP is faster and more accurate than other existing high-quality methods, particularly where it was mostly tested, that is, for mapping text sets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tendo como motivação o desenvolvimento de uma representação gráfica de redes com grande número de vértices, útil para aplicações de filtro colaborativo, este trabalho propõe a utilização de superfícies de coesão sobre uma base temática multidimensionalmente escalonada. Para isso, utiliza uma combinação de escalonamento multidimensional clássico e análise de procrustes, em algoritmo iterativo que encaminha soluções parciais, depois combinadas numa solução global. Aplicado a um exemplo de transações de empréstimo de livros pela Biblioteca Karl A. Boedecker, o algoritmo proposto produz saídas interpretáveis e coerentes tematicamente, e apresenta um stress menor que a solução por escalonamento clássico.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tendo como motivação o desenvolvimento de uma representação gráfica de redes com grande número de vértices, útil para aplicações de filtro colaborativo, este trabalho propõe a utilização de superfícies de coesão sobre uma base temática multidimensionalmente escalonada. Para isso, utiliza uma combinação de escalonamento multidimensional clássico e análise de procrustes, em algoritmo iterativo que encaminha soluções parciais, depois combinadas numa solução global. Aplicado a um exemplo de transações de empréstimo de livros pela Biblioteca Karl A. Boedecker, o algoritmo proposto produz saídas interpretáveis e coerentes tematicamente, e apresenta um stress menor que a solução por escalonamento clássico. O estudo da estabilidade da representação de redes frente à variação amostral dos dados, realizado com base em simulações envolvendo 500 réplicas em 6 níveis de probabilidade de inclusão das arestas nas réplicas, fornece evidência em favor da validade dos resultados obtidos.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The recent liberalization of the German energy market has forced the energy industry to develop and install new information systems to support agents on the energy trading floors in their analytical tasks. Besides classical approaches of building a data warehouse giving insight into the time series to understand market and pricing mechanisms, it is crucial to provide a variety of external data from the web. Weather information as well as political news or market rumors are relevant to give the appropriate interpretation to the variables of a volatile energy market. Starting from a multidimensional data model and a collection of buy and sell transactions a data warehouse is built that gives analytical support to the agents. Following the idea of web farming we harvest the web, match the external information sources after a filtering and evaluation process to the data warehouse objects, and present this qualified information on a user interface where market values are correlated with those external sources over the time axis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multidimensional compound optimization is a new paradigm in the drug discovery process, yielding efficiencies during early stages and reducing attrition in the later stages of drug development. The success of this strategy relies heavily on understanding this multidimensional data and extracting useful information from it. This paper demonstrates how principled visualization algorithms can be used to understand and explore a large data set created in the early stages of drug discovery. The experiments presented are performed on a real-world data set comprising biological activity data and some whole-molecular physicochemical properties. Data visualization is a popular way of presenting complex data in a simpler form. We have applied powerful principled visualization methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), to help the domain experts (screening scientists, chemists, biologists, etc.) understand and draw meaningful decisions. We also benchmark these principled methods against relatively better known visualization approaches, principal component analysis (PCA), Sammon's mapping, and self-organizing maps (SOMs), to demonstrate their enhanced power to help the user visualize the large multidimensional data sets one has to deal with during the early stages of the drug discovery process. The results reported clearly show that the GTM and HGTM algorithms allow the user to cluster active compounds for different targets and understand them better than the benchmarks. An interactive software tool supporting these visualization algorithms was provided to the domain experts. The tool facilitates the domain experts by exploration of the projection obtained from the visualization algorithms providing facilities such as parallel coordinate plots, magnification factors, directional curvatures, and integration with industry standard software. © 2006 American Chemical Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The polyparametric intelligence information system for diagnostics human functional state in medicine and public health is developed. The essence of the system consists in polyparametric describing of human functional state with the unified set of physiological parameters and using the polyparametric cognitive model developed as the tool for a system analysis of multitude data and diagnostics of a human functional state. The model is developed on the basis of general principles geometry and symmetry by algorithms of artificial intelligence systems. The architecture of the system is represented. The model allows analyzing traditional signs - absolute values of electrophysiological parameters and new signs generated by the model – relationships of ones. The classification of physiological multidimensional data is made with a transformer of the model. The results are presented to a physician in a form of visual graph – a pattern individual functional state. This graph allows performing clinical syndrome analysis. A level of human functional state is defined in the case of the developed standard (“ideal”) functional state. The complete formalization of results makes it possible to accumulate physiological data and to analyze them by mathematics methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the SINOPS project, an optimal state of the art simulation of the marine silicon cycle is attempted employing a biogeochemical ocean general circulation model (BOGCM) through three particular time steps relevant for global (paleo-) climate. In order to tune the model optimally, results of the simulations are compared to a comprehensive data set of 'real' observations. SINOPS' scientific data management ensures that data structure becomes homogeneous throughout the project. Practical work routine comprises systematic progress from data acquisition, through preparation, processing, quality check and archiving, up to the presentation of data to the scientific community. Meta-information and analytical data are mapped by an n-dimensional catalogue in order to itemize the analytical value and to serve as an unambiguous identifier. In practice, data management is carried out by means of the online-accessible information system PANGAEA, which offers a tool set comprising a data warehouse, Graphical Information System (GIS), 2-D plot, cross-section plot, etc. and whose multidimensional data model promotes scientific data mining. Besides scientific and technical aspects, this alliance between scientific project team and data management crew serves to integrate the participants and allows them to gain mutual respect and appreciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of this survey was to perform descriptive analysis of crime evolution in Portugal between 1995 and 2013. The main focus of this survey was to analyse spatial crime evolution patterns in Portuguese NUTS III regions. Most important crime types have been included into analysis. The main idea was to uncover relation between local patterns and global crime evolution; to define regions which have contributed to global crime evolution of some specific crime types and to define how they have contributed. There were many statistical reports and scientific papers which have analysed some particular crime types, but one global spatial-temporal analysis has not been found. Principal Component Analysis and multidimensional descriptive data analysis technique STATIS have been the base of the analysis. The results of this survey has shown that strong spatial and temporal crime patterns exist. It was possible to describe global crime evolution patterns and to define crime evolution patterns in NUTS III regions. It was possible to define three to four groups of crimes where each group shows similar spatial crime dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aquest treball consisteix en crear un projecte de magatzem de dades per a una empresa immobiliària. La primera etapa de la creació del magatzem consisteix en la definició del projecte, cosa que implica determinar els seus objectius i el seu abast i detallar la planificació del projecte. La segona fase consisteix en realitzar tot el seu disseny el més acuradament possible. En la tercera fase s'implementa el disseny anterior i es construeix el magatzem de dades, i també es creen els informes demanats per l'empresa mitjançant eines de Business Intelligence. Com a resultat final, s'haurà construït una base de dades en forma de cub multidimensional (data warehouse) amb les dades de tots els immobles que gestiona o ha gestionat l'empresa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Overall introduction.- Longitudinal studies have been designed to investigate prospectively, from their beginning, the pathway leading from health to frailty and to disability. Knowledge about determinants of healthy ageing and health behaviour (resources) as well as risks of functional decline is required to propose appropriate preventative interventions. The functional status in older people is important considering clinical outcome in general, healthcare need and mortality. Part I.- Results and interventions from lucas (longitudinal urban cohort ageing study). Authors.- J. Anders, U. Dapp, L. Neumann, F. Pröfener, C. Minder, S. Golgert, A. Daubmann, K. Wegscheider,. W. von Renteln-Kruse Methods.- The LUCAS core project is a longitudinal cohort of urban community-dwelling people 60 years and older, recruited in 2000/2001. Further LUCAS projects are cross-sectional comparative and interventional studies (RCT). Results.- The emphasis will be on geriatric medical care in a population-based approach, discussing different forms of access, too. (Dapp et al. BMC Geriatrics 2012, 12:35; http://www.biomedcentral.com/1471-2318/12/35): - longitudinal data from the LUCAS urban cohort (n = 3.326) will be presented covering 10 years of observation, including the prediction of functional decline, need of nursing care, and mortality by using a self-filling screening tool; - interventions to prevent functional decline do focus on first (pre-clinical) signs of pre-frailty before entering the frailty-cascade ("Active Health Promotion in Old Age", "geriatric mobility centre") or disability ("home visits"). Conclusions.- The LUCAS research consortium was established to study particular aspects of functional competence, its changes with ageing, to detect pre-clinical signs of functional decline, and to address questions on how to maintain functional competence and to prevent adverse outcome in different settings. The multidimensional data base allows the exploration of several further questions. Gait performance was exmined by GAITRite®-System. Supported by the Federal Ministry for Education and Research (BMBF Funding No. 01ET1002A). Part II.- Selected results from the lausanne cohort 65+ (Lc65 + ) Study (Switzerland). Authors.- Prof Santos-Eggimann Brigitte, Dr Seematter-Bagnoud Laurence, Prof Büla Christophe, Dr Rochat Stéphane. Methods.- The Lc65+ cohort was launched in 2004 with the random selection of 3054 eligible individuals aged 65 to 70 (birth year 1934-1938) in the non-institutionalized population of Lausanne (Switzerland). Results.- Information is collected about life course social and health-related events, socio-economics, medical and psychosocial dimensions, lifestyle habits, limitations in activities of daily living, mobility impairments, and falls. Gait performance are objectively measured using body-fixed sensors. Frailty is assessed using Fried's frailty phenotype. Follow-up consists in annual self-completed questionnaires, as well as physical examination and physical and mental performance tests every three years. - Lausanne cohort 65+ (Lc65 + ): design and longitudinal outcomes. The baseline data collection was completed among 1422 participants in 2004-2005 through self-completed questionnaires, face-to-face interviews, physical examination and tests of mental and physical performances. Information about institutionalization, self-reported health services utilization, and death is also assessed. An additional random sample (n = 1525) of 65-70 years old subjects was recruited in 2009 (birth year 1939-1943). - lecture no 4: alcohol intake and gait parameters: prevalent and longitudinal association in the Lc65+ study. The association between alcohol intake and gait performance was investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plusieurs familles de fonctions spéciales de plusieurs variables, appelées fonctions d'orbites, sont définies dans le contexte des groupes de Weyl de groupes de Lie simples compacts/d'algèbres de Lie simples. Ces fonctions sont étudiées depuis près d'un siècle en raison de leur lien avec les caractères des représentations irréductibles des algèbres de Lie simples, mais également de par leurs symétries et orthogonalités. Nous sommes principalement intéressés par la description des relations d'orthogonalité discrète et des transformations discrètes correspondantes, transformations qui permettent l'utilisation des fonctions d'orbites dans le traitement de données multidimensionnelles. Cette description est donnée pour les groupes de Weyl dont les racines ont deux longueurs différentes, en particulier pour les groupes de rang $2$ dans le cas des fonctions d'orbites du type $E$ et pour les groupes de rang $3$ dans le cas de toutes les autres fonctions d'orbites.