999 resultados para Multibody system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter presents a general view of multibody system concept and definition by describing the main features associated with spatial systems. The mechanical components, which can be modeled as rigid or flexible, are constrained by kinematic pair of different types. Additionally, the bodies can be actuated upon by force elements and external forces due to interaction with environment. This chapter also presents some examples of application of multibody systems that can include automotive vehicles, mechanisms, robots and biomechanical systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Series: Solid mechanics and its applications, vol. 226"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Series title: Computational methods in applied sciences, ISSN1871-3033, vol. 42"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is to describe the design and the implementation of an experiment to study the dynamics and the active control of a slewing multi-link flexible structure. The experimental apparatus was designed to be representative of a flexible space structure such as a satellite with multiple flexible appendages. In this study we describe the design procedures, the analog and digital instrumentation, the analytical modeling together with model validation studies carried out through experimental modal testing and parametric system identification studies in the frequency domain. Preliminary results of a simple positional control where the sensor and the actuator are positioned physically at the same point is also described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BOOK REVIEWS Multibody System Mechanics: Modelling, Stability, Control, and Ro- bustness, by V. A. Konoplev and A. Cheremensky, Mathematics and its Appli- cations Vol. 1, Union of Bulgarian Mathematicians, Sofia, 2001, XXII + 288 pp., $ 65.00, ISBN 954-8880-09-01

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Series: Solid mechanics and its applications, vol. 226"

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Työn tavoitteena oli löytää tarkka menetelmä kampiakselin vaurioitumisriskin laskentaan vertailemalla eri laskentamenetelmiä. Lopuksi suoritettiin simulointi monikappalejärjestelmälle käyttäen elastisia malleja todellisista rakenteista. Simulointiohjelmana käytettiin AVL:n kehittämää Excite:ia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis introduces a real-time simulation environment based on the multibody simulation approach. The environment consists of components that are used in conventional product development, including computer aided drawing, visualization, dynamic simulation and finite element software architecture, data transfer and haptics. These components are combined to perform as a coupled system on one platform. The environment is used to simulate mobile and industrial machines at different stages of a product life time. Consequently, the demands of the simulated scenarios vary. In this thesis, a real-time simulation environment based on the multibody approach is used to study a reel mechanism of a paper machine and a gantry crane. These case systems are used to demonstrate the usability of the real-time simulation environment for fault detection purposes and in the context of a training simulator. In order to describe the dynamical performance of a mobile or industrial machine, the nonlinear equations of motion must be defined. In this thesis, the dynamical behaviour of machines is modelled using the multibody simulation approach. A multibody system may consist of rigid and flexible bodies which are joined using kinematic joint constraints while force components are used to describe the actuators. The strength of multibody dynamics relies upon its ability to describe nonlinearities arising from wearing of the components, friction, large rotations or contact forces in a systematic manner. For this reason, the interfaces between subsystems such as mechanics, hydraulics and control systems of the mechatronic machine can be defined and analyzed in a straightforward manner.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this thesis is the development of a multibody dynamic model matching the observed movements of the lower limb of a skier performing the skating technique in cross-country style. During the construction of this model, the formulation of the equation of motion was made using the Euler - Lagrange approach with multipliers applied to a multibody system in three dimensions. The description of the lower limb of the skate skier and the ski was completed by employing three bodies, one representing the ski, and two representing the natural movements of the leg of the skier. The resultant system has 13 joint constraints due to the interconnection of the bodies, and four prescribed kinematic constraints to account for the movements of the leg, leaving the amount of degrees of freedom equal to one. The push-off force exerted by the skate skier was taken directly from measurements made on-site in the ski tunnel at the Vuokatti facilities (Finland) and was input into the model as a continuous function. Then, the resultant velocities and movement of the ski, center of mass of the skier, and variation of the skating angle were studied to understand the response of the model to the variation of important parameters of the skate technique. This allowed a comparison of the model results with the real movement of the skier. Further developments can be made to this model to better approximate the results to the real movement of the leg. One can achieve this by changing the constraints to include the behavior of the real leg joints and muscle actuation. As mentioned in the introduction of this thesis, a multibody dynamic model can be used to provide relevant information to ski designers and to obtain optimized results of the given variables, which athletes can use to improve their performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation describes an approach for developing a real-time simulation for working mobile vehicles based on multibody modeling. The use of multibody modeling allows comprehensive description of the constrained motion of the mechanical systems involved and permits real-time solving of the equations of motion. By carefully selecting the multibody formulation method to be used, it is possible to increase the accuracy of the multibody model while at the same time solving equations of motion in real-time. In this study, a multibody procedure based on semi-recursive and augmented Lagrangian methods for real-time dynamic simulation application is studied in detail. In the semirecursive approach, a velocity transformation matrix is introduced to describe the dependent coordinates into relative (joint) coordinates, which reduces the size of the generalized coordinates. The augmented Lagrangian method is based on usage of global coordinates and, in that method, constraints are accounted using an iterative process. A multibody system can be modelled as either rigid or flexible bodies. When using flexible bodies, the system can be described using a floating frame of reference formulation. In this method, the deformation mode needed can be obtained from the finite element model. As the finite element model typically involves large number of degrees of freedom, reduced number of deformation modes can be obtained by employing model order reduction method such as Guyan reduction, Craig-Bampton method and Krylov subspace as shown in this study The constrained motion of the working mobile vehicles is actuated by the force from the hydraulic actuator. In this study, the hydraulic system is modeled using lumped fluid theory, in which the hydraulic circuit is divided into volumes. In this approach, the pressure wave propagation in the hoses and pipes is neglected. The contact modeling is divided into two stages: contact detection and contact response. Contact detection determines when and where the contact occurs, and contact response provides the force acting at the collision point. The friction between tire and ground is modelled using the LuGre friction model, which describes the frictional force between two surfaces. Typically, the equations of motion are solved in the full matrices format, where the sparsity of the matrices is not considered. Increasing the number of bodies and constraint equations leads to the system matrices becoming large and sparse in structure. To increase the computational efficiency, a technique for solution of sparse matrices is proposed in this dissertation and its implementation demonstrated. To assess the computing efficiency, augmented Lagrangian and semi-recursive methods are implemented employing a sparse matrix technique. From the numerical example, the results show that the proposed approach is applicable and produced appropriate results within the real-time period.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The wheel - rail contact analysis plays a fundamental role in the multibody modeling of railway vehicles. A good contact model must provide an accurate description of the global contact phenomena (contact forces and torques, number and position of the contact points) and of the local contact phenomena (position and shape of the contact patch, stresses and displacements). The model has also to assure high numerical efficiency (in order to be implemented directly online within multibody models) and a good compatibility with commercial multibody software (Simpack Rail, Adams Rail). The wheel - rail contact problem has been discussed by several authors and many models can be found in the literature. The contact models can be subdivided into two different categories: the global models and the local (or differential) models. Currently, as regards the global models, the main approaches to the problem are the so - called rigid contact formulation and the semi – elastic contact description. The rigid approach considers the wheel and the rail as rigid bodies. The contact is imposed by means of constraint equations and the contact points are detected during the dynamic simulation by solving the nonlinear algebraic differential equations associated to the constrained multibody system. Indentation between the bodies is not permitted and the normal contact forces are calculated through the Lagrange multipliers. Finally the Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the tangential forces respectively. Also the semi - elastic approach considers the wheel and the rail as rigid bodies. However in this case no kinematic constraints are imposed and the indentation between the bodies is permitted. The contact points are detected by means of approximated procedures (based on look - up tables and simplifying hypotheses on the problem geometry). The normal contact forces are calculated as a function of the indentation while, as in the rigid approach, the Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the tangential forces. Both the described multibody approaches are computationally very efficient but their generality and accuracy turn out to be often insufficient because the physical hypotheses behind these theories are too restrictive and, in many circumstances, unverified. In order to obtain a complete description of the contact phenomena, local (or differential) contact models are needed. In other words wheel and rail have to be considered elastic bodies governed by the Navier’s equations and the contact has to be described by suitable analytical contact conditions. The contact between elastic bodies has been widely studied in literature both in the general case and in the rolling case. Many procedures based on variational inequalities, FEM techniques and convex optimization have been developed. This kind of approach assures high generality and accuracy but still needs very large computational costs and memory consumption. Due to the high computational load and memory consumption, referring to the current state of the art, the integration between multibody and differential modeling is almost absent in literature especially in the railway field. However this integration is very important because only the differential modeling allows an accurate analysis of the contact problem (in terms of contact forces and torques, position and shape of the contact patch, stresses and displacements) while the multibody modeling is the standard in the study of the railway dynamics. In this thesis some innovative wheel – rail contact models developed during the Ph. D. activity will be described. Concerning the global models, two new models belonging to the semi – elastic approach will be presented; the models satisfy the following specifics: 1) the models have to be 3D and to consider all the six relative degrees of freedom between wheel and rail 2) the models have to consider generic railway tracks and generic wheel and rail profiles 3) the models have to assure a general and accurate handling of the multiple contact without simplifying hypotheses on the problem geometry; in particular the models have to evaluate the number and the position of the contact points and, for each point, the contact forces and torques 4) the models have to be implementable directly online within the multibody models without look - up tables 5) the models have to assure computation times comparable with those of commercial multibody software (Simpack Rail, Adams Rail) and compatible with RT and HIL applications 6) the models have to be compatible with commercial multibody software (Simpack Rail, Adams Rail). The most innovative aspect of the new global contact models regards the detection of the contact points. In particular both the models aim to reduce the algebraic problem dimension by means of suitable analytical techniques. This kind of reduction allows to obtain an high numerical efficiency that makes possible the online implementation of the new procedure and the achievement of performance comparable with those of commercial multibody software. At the same time the analytical approach assures high accuracy and generality. Concerning the local (or differential) contact models, one new model satisfying the following specifics will be presented: 1) the model has to be 3D and to consider all the six relative degrees of freedom between wheel and rail 2) the model has to consider generic railway tracks and generic wheel and rail profiles 3) the model has to assure a general and accurate handling of the multiple contact without simplifying hypotheses on the problem geometry; in particular the model has to able to calculate both the global contact variables (contact forces and torques) and the local contact variables (position and shape of the contact patch, stresses and displacements) 4) the model has to be implementable directly online within the multibody models 5) the model has to assure high numerical efficiency and a reduced memory consumption in order to achieve a good integration between multibody and differential modeling (the base for the local contact models) 6) the model has to be compatible with commercial multibody software (Simpack Rail, Adams Rail). In this case the most innovative aspects of the new local contact model regard the contact modeling (by means of suitable analytical conditions) and the implementation of the numerical algorithms needed to solve the discrete problem arising from the discretization of the original continuum problem. Moreover, during the development of the local model, the achievement of a good compromise between accuracy and efficiency turned out to be very important to obtain a good integration between multibody and differential modeling. At this point the contact models has been inserted within a 3D multibody model of a railway vehicle to obtain a complete model of the wagon. The railway vehicle chosen as benchmark is the Manchester Wagon the physical and geometrical characteristics of which are easily available in the literature. The model of the whole railway vehicle (multibody model and contact model) has been implemented in the Matlab/Simulink environment. The multibody model has been implemented in SimMechanics, a Matlab toolbox specifically designed for multibody dynamics, while, as regards the contact models, the CS – functions have been used; this particular Matlab architecture allows to efficiently connect the Matlab/Simulink and the C/C++ environment. The 3D multibody model of the same vehicle (this time equipped with a standard contact model based on the semi - elastic approach) has been then implemented also in Simpack Rail, a commercial multibody software for railway vehicles widely tested and validated. Finally numerical simulations of the vehicle dynamics have been carried out on many different railway tracks with the aim of evaluating the performances of the whole model. The comparison between the results obtained by the Matlab/ Simulink model and those obtained by the Simpack Rail model has allowed an accurate and reliable validation of the new contact models. In conclusion to this brief introduction to my Ph. D. thesis, we would like to thank Trenitalia and the Regione Toscana for the support provided during all the Ph. D. activity. Moreover we would also like to thank the INTEC GmbH, the society the develops the software Simpack Rail, with which we are currently working together to develop innovative toolboxes specifically designed for the wheel rail contact analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim of this research is the development and validation of a comprehensive multibody motorcycle model featuring rigid-ring tires, taking into account both slope and roughness of road surfaces. A novel parametrization for the general kinematics of the motorcycle is proposed, using a mixed reference-point and relative-coordinates approach. The resulting description, developed in terms of dependent coordinates, makes it possible to efficiently include rigid-ring kinematics as well as road elevation and slope. The equations of motion for the multibody system are derived symbolically and the constraint equations arising from the dependent-coordinate formulation are handled using a projection technique. Therefore the resulting system of equations can be integrated in time domain using a standard ODE algorithm. The model is validated with respect to maneuvers experimentally measured on the race track, showing consistent results and excellent computational efficiency. More in detail, it is also capable of reproducing the chatter vibration of racing motorcycles. The chatter phenomenon, appearing during high speed cornering maneuvers, consists of a self-excited vertical oscillation of both the front and rear unsprung masses in the range of frequency between 17 and 22 Hz. A critical maneuver is numerically simulated, and a self-excited vibration appears, consistent with the experimentally measured chatter vibration. Finally, the driving mechanism for the self-excitation is highlighted and a physical interpretation is proposed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multibody System Dynamics has been responsible for revolutionizing Mechanical Engineering Design by using mathematical models to simulate and optimize the dynamic behavior of a wide range of mechanical systems. These mathematical models not only can provide valuable informations about a system that could otherwise be obtained only by experiments with prototypes, but also have been responsible for the development of many model-based control systems. This work represents a contribution for dynamic modeling of multibody mechanical systems by developing a novel recursive modular methodology that unifies the main contributions of several Classical Mechanics formalisms. The reason for proposing such a methodology is to motivate the implementation of computational routines for modeling complex multibody mechanical systems without being dependent on closed source software and, consequently, to contribute for the teaching of Multibody System Dynamics in undergraduate and graduate levels. All the theoretical developments are based on and motivated by a critical literature review, leading to a general matrix form of the dynamic equations of motion of a multibody mechanical system (that can be expressed in terms of any set of variables adopted for the description of motions performed by the system, even if such a set includes redundant variables) and to a general recursive methodology for obtaining mathematical models of complex systems given a set of equations describing the dynamics of each of its uncoupled subsystems and another set describing the constraints among these subsystems in the assembled system. This work also includes some discussions on the description of motion (using any possible set of motion variables and admitting any kind of constraint that can be expressed by an invariant), and on the conditions for solving forward and inverse dynamics problems given a mathematical model of a multibody system. Finally, some examples of computational packages based on the novel methodology, along with some case studies, are presented, highlighting the contributions that can be achieved by using the proposed methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Control of chaotic instability in a rotating multibody system in the form of a dual-spin spacecraft with an axial nutational damper is achieved using an algorithm derived using energy methods. The control method is implemented on two realistic spacecraft parameter configurations which have been found to exhibit chaotic instability when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitudes and frequencies. Such a torque, in practice, may arise under malfunction of the control system or from an unbalanced rotor. Chaotic instabilities arising from these torques could introduce uncertainties and irregularities into a spacecraft's attitude and consequently impair pointing accuracy. The control method is formulated from nutational stability results derived using an energy sink approximation for a dual-spin spacecraft with an asymmetric platform and axisymmetric rotor. The effectiveness of the control method is shown numerically and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents and Bifurcation diagrams.