970 resultados para Multiband planar antenna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compact single –feed multiband planar antenna configuration Suitable for GPS, DCS. 2.4/5.8 GHz WLAN applications are presented. The antenna has dimensions 38 x 3 x 1.6 mm and offers good radiation and reflection characteristics in the above frequency bands. The antenna has a simple geometry and can be easily fed using a 50 coaxial probe

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compact single - feed muttiband planar antenna configuration suitable for GPS, DCS. 2.4/5.8 GHz WLAN applications is presented. The antenna has dimensions 38 x 3 x 1.6 mm and offers good radiation and reflection characteristics in the above frequency bands. The antenna has a simple geometry and can be easily fed using a 50 coaxial probe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconfigurable antennas capable of radiating in only specific desired directions increase system functionality in applications like direction finding and beam steering. This paper presents the design simulation, fabrication and measurement of a horizontally polarized, direction reconfigurable Vivaldi antenna, designed for the lower-band UWB (2-6 GHz). This design employs eight circularly distributed independent Vivaldi antennas with a common port, electronically controlled by PIN diodes acting as RF switches. Experimental results show that the reconfigurable antenna has a bandwidth of 4 GHz (2-6 GHz), with 5 dB gain in the desired direction and capable of steering over the 360° range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antennas are a necessary and critical component of communications and radar systems, but their inability to adjust to new operating scenarios can sometimes limit the system performance. Reconfigurable antennas capable of radiating in only specific desired directions can ameliorate these restrictions and help to achieve increased functionality in applications like direction finding and beam steering. This paper presents the design simulation, fabrication and measurement of a wide-band, horizontally polarized, direction reconfigurable microstrip antenna operating at 2.45 GHz. The design employs a central horizontally polarized omnidirectional active element surrounded by electronically reconfigurable parasitic microstrip elements, controlled by PIN diodes acting as RF switches. Experimental results show that the reconfigurable antenna has a bandwidth of 40% (2-3 GHz), with 3 dB gain in the desired direction and capable of steering over the 360° range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A periodic finite-difference time-domain (FDTD) analysis is presented and applied for the first time in the study of a two-dimensional (2-D) leaky-wave planar antenna based on dipole frequency selective surfaces (FSSs). First, the effect of certain aspects of the FDTD modeling in the modal analysis of complex waves is studied in detail. Then, the FDTD model is used for the dispersion analysis of the antenna of interest. The calculated values of the leaky-wave attenuation constants suggest that, for an antenna of this type and moderate length, a significant amount of power reaches the edges of the antenna, and thus diffraction can play an important role. To test the validity of our dispersion analysis, measured radiation patterns of a fabricated prototype are presented and compared with those predicted by a leaky-wave approach based on the periodic FDTD results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless communications are widely used for various applications, requiring antennas with different features. Often, to achieve the desired radiation pattern, is necessary to employ antenna arrays, using non-uniform excitation on its elements. Power dividers can be used and the best known are the T-junction and the Wilkinson power divider, whose main advantage is the isolation between output ports. In this paper the impact of this isolation on the overall performance of a circularly polarized planar antenna array using non-uniform excitation is investigated. Results show a huge decrease of the array bandwidths either in terms of return loss or in polarization, without resistors. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A single-feed rectangular-ring microstrip antenna is proposed for indoor communication under the Bluetooth protocol. The dimensions of the antenna together with the location of the feed point are optimized through field simulations in order to cover the Bluetooth bandwidth and to avoid linear polarization. The performance and the efficiency of the antenna are illustrated in a real indoor environment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is the outcome of the theoretical and experimental investigations on mocrostrip-fed printed strip monopole antenna.Finite ground plane has been effectively utilized to excite a new resonance near the fundamental mode by introducing another extended strip from the ground plane,without affecting compactness.Further size reduction was achieved by carrying out folding analysis on dual strip antenna and a compact folded dual strip antenna has been designed.Design methodologies for both the compact dual band antennas are presented.The proposed antennas can be used for mobile and WLAN applications due to wide bandwidth,moderate gain and omnidirectional radiation coverage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compact microstrip multiband antenna on a modified ground plane which can operate over the bands starting from 900 MHz to 5.35 GHz which includes the GSM (880-960) GPS (1568-1592 MHz), DCS (1710-1880 MHz), and PCS (1850- 1990 MHz). UMTS (1920-2170 MHz), IEEE 802.11 b/g (2400- 2484) and WLAN IEEE 802.11a band (5.15-5.35) is reported in this paper. The overall dimension of the antenna is 33 x 33 mm2 including the top patch with a dimension 22 x 22 mm2. The experimental results of the antenna are presented in this paper. The results confirm that the antenna exhibits wide band characteristics and covers 7 bands of operation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A planar-spiral antenna to be used in an ultrawideband (UWB) radar system for heart activity monitoring is presented. The antenna, named “twin,” is constituted by two spiral dipoles in a compact structure. The reflection coefficient at the feed point of the dipoles is lower than −8 dB over the 3–12 GHz band, while the two-dipoles coupling is about −20 dB. The radiated beam is perpendicular to the plane of the spiral, so the antenna is wearable and it may be an optimal radiator for a medical UWB radar for heart rate detection. The designed antenna has been also used to check some hypotheses about the UWB radar heart activity detection mechanism. The radiation impedance variation, caused by the thorax vibrations associated with heart activity, seems to be the most likely explanation of the UWB radar operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An antenna which has been conceived as a portable system for satellite communications based on the recommendations ITU-R S.580-6 [1] and ITU-R S.465-5 [2] for small antennas, i.e., with a diameter lower than 50 wavelengths, is introduced. It is a planar and a compact structure with a size of 40×40×2 cm. The antenna is formed by an array of 256 printed elements covering a large bandwidth (14.7%) at X-Band. The specification includes transmission (Tx) and reception (Rx) bands simultaneously. The printed antenna has a radiation pattern with a 3dB beamwidth of 5°, over a 31dBi gain, and a dual and an interchangeable circular polarization

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, earth stations have as a common feature the use of large reflector antenna for downloading data from satellites. Large reflectors have impairments such as mechanical complexity, low flexibility and high cost. Thus, the feasibility of other antenna technologies must be evaluated, such as conformal adaptive antennas based on multiple planar active arrays. In the scenery under study, the capability to track several satellites simultaneously, higher flexibility, lower production and maintenance cost, modularity and a more efficient use of the spectrum; are the most important advantage to boost up active antenna arrays over large dishes.