869 resultados para Multiagent Simulation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving numerous entities trying to obtain the best advantages and profits while limited by power-network characteristics and constraints.1 The restructuring and consequent deregulation of electricity markets introduced a new economic dimension to the power industry. Some observers have criticized the restructuring process, however, because it has failed to improve market efficiency and has complicated the assurance of reliability and fairness of operations. To study and understand this type of market, we developed the Multiagent Simulator of Competitive Electricity Markets (MASCEM) platform based on multiagent simulation. The MASCEM multiagent model includes players with strategies for bid definition, acting in forward, day-ahead, and balancing markets and considering both simple and complex bids. Our goal with MASCEM was to simulate as many market models and player types as possible. This approach makes MASCEM both a short- and mediumterm simulation as well as a tool to support long-term decisions, such as those taken by regulators. This article proposes a new methodology integrated in MASCEM for bid definition in electricity markets. This methodology uses reinforcement learning algorithms to let players perceive changes in the environment, thus helping them react to the dynamic environment and adapt their bids accordingly.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM is integrated with ALBidS, a system that provides several dynamic strategies for agents’ behavior. This paper presents a method that aims at enhancing ALBidS competence in endowing market players with adequate strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible actions. These actions are defined accordingly to the most probable points of bidding success. With the purpose of accelerating the convergence process, a simulated annealing based algorithm is included.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the restructuring of the energy sector in industrialized countries there is an increased complexity in market players’ interactions along with emerging problems and new issues to be addressed. Decision support tools that facilitate the study and understanding of these markets are extremely useful to provide players with competitive advantage. In this context arises MASCEM, a multi-agent simulator for competitive electricity markets. It is essential to reinforce MASCEM with the ability to recreate electricity markets reality in the fullest possible extent, making it able to simulate as many types of markets models and players as possible. This paper presents the development of the Balancing Market in MASCEM. A key module to the study of competitive electricity markets, as it has well defined and distinct characteristics previously implemented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increase of distributed generation (DG) has brought about new challenges in electrical networks electricity markets and in DG units operation and management. Several approaches are being developed to manage the emerging potential of DG, such as Virtual Power Players (VPPs), which aggregate DG plants; and Smart Grids, an approach that views generation and associated loads as a subsystem. This paper presents a multi-level negotiation mechanism for Smart Grids optimal operation and negotiation in the electricity markets, considering the advantages of VPPs’ management. The proposed methodology is implemented and tested in MASCEM – a multiagent electricity market simulator, developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM provides several dynamic strategies for agents’ behavior. This paper presents a method that aims to provide market players with strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible bids. These bids are defined accordingly to the cost function that each producer presents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi- Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking Hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS’ strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contextualization is critical in every decision making process. Adequate responses to problems depend not only on the variables with direct influence on the outcomes, but also on a correct contextualization of the problem regarding the surrounding environment. Electricity markets are dynamic environments with increasing complexity, potentiated by the last decades' restructuring process. Dealing with the growing complexity and competitiveness in this sector brought the need for using decision support tools. A solid example is MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), whose players' decisions are supported by another multiagent system – ALBidS (Adaptive Learning strategic Bidding System). ALBidS uses artificial intelligence techniques to endow market players with adaptive learning capabilities that allow them to achieve the best possible results in market negotiations. This paper studies the influence of context awareness in the decision making process of agents acting in electricity markets. A context analysis mechanism is proposed, considering important characteristics of each negotiation period, so that negotiating agents can adapt their acting strategies to different contexts. The main conclusion is that context-dependant responses improve the decision making process. Suiting actions to different contexts allows adapting the behaviour of negotiating entities to different circumstances, resulting in profitable outcomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The energy sector has suffered a significant restructuring that has increased the complexity in electricity market players' interactions. The complexity that these changes brought requires the creation of decision support tools to facilitate the study and understanding of these markets. The Multiagent Simulator of Competitive Electricity Markets (MASCEM) arose in this context, providing a simulation framework for deregulated electricity markets. The Adaptive Learning strategic Bidding System (ALBidS) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM, ALBidS considers several different strategic methodologies based on highly distinct approaches. Six Thinking Hats (STH) is a powerful technique used to look at decisions from different perspectives, forcing the thinker to move outside its usual way of thinking. This paper aims to complement the ALBidS strategies by combining them and taking advantage of their different perspectives through the use of the STH group decision technique. The combination of ALBidS' strategies is performed through the application of a genetic algorithm, resulting in an evolutionary learning approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ski resorts are deploying more and more systems of artificial snow. These tools are necessary to ensure an important economic activity for the high alpine valleys. However, artificial snow raises important environmental issues that can be reduced by an optimization of its production. This paper presents a software prototype based on artificial intelligence to help ski resorts better manage their snowpack. It combines on one hand a General Neural Network for the analysis of the snow cover and the spatial prediction, with on the other hand a multiagent simulation of skiers for the analysis of the spatial impact of ski practice. The prototype has been tested on the ski resort of Verbier (Switzerland).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La tesi approccia in modo transdisciplinare biologia, architettura e robotica, con la finalità di indagare e applicare principi costruttivi attraverso l’interazione tra sciami di droni che depositano materiale fibroso su strutture gonfiabili di supporto. L’attenzione principale è nello sviluppo (attraverso un workflow computazionale che gestisce sciami di agenti costruttori) di una tettonica che integra struttura, spazio e ornamento all’interno dello stesso processo progettuale, il quale si sviluppa coerentemente dall’ideazione fino alla fabbricazione. Sono stati studiati modelli biologici quali le colonie di ragni sociali, i quali costruiscono artefatti di grandi dimensioni relativamente a quelle del singolo individuo grazie ad un’organizzazione coordinata ed emergente e alle proprietà dei sistemi fibrosi. L’auto-organizzazione e la decentralizzazione, insieme alle caratteristiche del sistema materiale, sono stati elementi indispensabili nell’estrapolazione prima e nella codificazione poi di un insieme di regole adatte allo sviluppo del sistema costruttivo. Parallelamente alla simulazione digitale si è andati a sviluppare anche un processo fisico di fabbricazione che, pur tenendo conto dei vincoli economici e tecnici, potesse dimostrarsi una prova di concetto e fattibilità del sistema costruttivo. Sono state investigate le possibilità che un drone offre nel campo della fabbricazione architettonica mediante il rilascio di fili su elementi gonfiabili in pressione. Il processo può risultare vantaggioso in scenari in cui non è possibile allestire infrastrutture costruttive tradizionali (es. gole alpine, foreste). Tendendo conto dei vincoli e delle caratteristiche del sistema di fabbricazione proposto, sono state esplorate potenzialità e criticità del sistema studiato.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electricity markets worldwide are complex and dynamic environments with very particular characteristics. These are the result of electricity markets’ restructuring and evolution into regional and continental scales, along with the constant changes brought by the increasing necessity for an adequate integration of renewable energy sources. The rising complexity and unpredictability in electricity markets has increased the need for the intervenient entities in foreseeing market behaviour. Market players and regulators are very interested in predicting the market’s behaviour. Market players need to understand the market behaviour and operation in order to maximize their profits, while market regulators need to test new rules and detect market inefficiencies before they are implemented. The growth of usage of simulation tools was driven by the need for understanding those mechanisms and how the involved players' interactions affect the markets' outcomes. Multi-agent based software is particularly well fitted to analyse dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. Several modelling tools directed to the study of restructured wholesale electricity markets have emerged. Still, they have a common limitation: the lack of interoperability between the various systems to allow the exchange of information and knowledge, to test different market models and to allow market players from different systems to interact in common market environments. This dissertation proposes the development and implementation of ontologies for semantic interoperability between multi-agent simulation platforms in the scope of electricity markets. The added value provided to these platforms is given by enabling them sharing their knowledge and market models with other agent societies, which provides the means for an actual improvement in current electricity markets studies and development. The proposed ontologies are implemented in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) and tested through the interaction between MASCEM agents and agents from other multi-agent based simulators. The implementation of the proposed ontologies has also required a complete restructuring of MASCEM’s architecture and multi-agent model, which is also presented in this dissertation. The results achieved in the case studies allow identifying the advantages of the novel architecture of MASCEM, and most importantly, the added value of using the proposed ontologies. They facilitate the integration of independent multi-agent simulators, by providing a way for communications to be understood by heterogeneous agents from the various systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The forthcoming smart grids are comprised of integrated microgrids operating in grid-connected and isolated mode with local generation, storage and demand response (DR) programs. The proposed model is based on three successive complementary steps for power transaction in the market environment. The first step is characterized as a microgrid’s internal market; the second concerns negotiations between distinct interconnected microgrids; and finally, the third refers to the actual electricity market. The proposed approach is modeled and tested using a MAS framework directed to the study of the smart grids environment, including the simulation of electricity markets. This is achieved through the integration of the proposed approach with the MASGriP (Multi-Agent Smart Grid Platform) system.