916 resultados para Multi-slice computed tomography
Resumo:
In questo studio ci siamo proposti di investigare i sistemi di modulazione automatica della dose sui sistemi TC Multislice (Automatic Exposure Control – AEC) da tre diversi produttori, aventi differenti indicatori di qualità delle immagini. Il presente lavoro è stato svolto presso il Servizio di Fisica Sanitaria dell’Azienda Ospedaliera Universitaria - Policlinico Sant’Orsola-Malpighi di Bologna e consiste in un’analisi quantitativa della dose impiegata durante esami di Tomografia Computerizzata Multi-Slice (TCMS) e delle rispettive immagini radiologiche. Le immagini sono state acquisite con : GE LightSpeed VCT 64 e GE LightSpeed 16 (AEC AutomA 3D longitudinale e angolare), Siemens Sensation 16 (AEC CARE Dose 4D combinato), Philips Brilliance 16 e iCT 64 (separati in AEC ZDOM longitudinale e AEC DDOM angolare). Le acquisizioni TCMS sono state effettuate a differenti kV e mA di riferimento, al fine di investigarne gli effetti sulla modulazione, impiegando algoritmi di ricostruzione standard presenti su ogni macchina. Due fantocci antropomorfi simulanti la zona del torace e dell’addome sono stati utilizzati per simulare un paziente standard posizionato come in un esame clinico di routine ; a questo proposito, sono stati impiegati protocolli elicoidali standard con e senza modulazione. Sono inoltre stati testati differenti valori di indice di qualità delle immagini. Il profilo dei mA lungo la lunghezza è stato ottenuto utilizzando ImageJ, un programma open source comunemente utilizzato per l’elaborazione di immagini; i mAs sono stati normalizzati ad un fattore che tiene conto delle differenti geometrie e delle filtrazioni dei diversi scanner tomografici analizzati nell’esperienza. Il rumore è stato valutato tramite la scelta di determinate ROI (Region Of Interest) localizzate in aree il più possibili uniformi disponibili lungo i fantocci. Abbiamo registrato che una variazione del Noise Index o dei mAs di riferimento a seconda della tipologia di macchina analizzata risulta in uno shift dei profili di dose; lo stesso si è verificato quando sono stati cambiato kV o mA nella scout di acquisizione. Sistemi AEC longitudinali e combinati hanno mostrato profili di mAs normalizzati simili tra loro, con valori elevati evidenziati nella zona delle spalle e zona pelvi; sono state osservate differenze del 30-40% tra i differenti scanner tomografici. Solo in un caso di macchina analizzata si è verificato un comportamento opposto rispetto alle altre due tipologie di macchina in esame. A dispetto della differente natura dei sistemi AEC, i risultati ottenuti dai protocolli combinati e longitudinali sono simili tra loro. Il rumore presente nelle immagini è aumentato ad un livello accettabile e la sua uniformità lungo la direzione di scan è migliorata.
Resumo:
As an Alpine country, Switzerland has not only a thriving mountaineering tourist industry, but also many mountaineering casualties. At the request of the state attorney, most of the victims undergo only an external inspection without autopsy. One of the main tasks of the forensic pathologist under these circumstances is the correct identification of the deceased for a fast release to their kin. Nevertheless, detailed knowledge of the injuries sustained may lead to improved safety measures, such as better protective equipment. In this study, we examined the feasibility of using cross-sectional imaging with postmortem multi-slice computed tomography (MSCT) to detect lesions of the skeletal structures and internal organs. For this purpose, we used whole-body MSCT to examine 10 corpses that suffered fatal falls from great height while climbing in the Swiss part of the European Alps from the years 2007 to 2009. We conclude that postmortem CT imaging is a valuable tool for dental identification and is superior to plain X-rays as a viable compromise between a solely external legal inspection and an autopsy because it delivers otherwise irretrievable additional internal findings non-invasively. This fact is of great importance in cases where an autopsy is refused.
Resumo:
Descending cerebellar tonsillar herniation is a serious and common complication of intracranial mass lesions. We documented three cases of fatal blunt head injury using post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI). The results showed massive bone and soft-tissue injuries of the head and signs of high intracranial pressure with herniation of the cerebellar tonsils. The diagnosis of tonsillar herniation by post-mortem radiological examination was performed prior to autopsy. This paper describes the detailed retrospective evaluation of the position of the cerebellar tonsils in post-mortem imaging in comparison to clinical studies.
Resumo:
AIMS Transcatheter mitral valve replacement (TMVR) is an emerging technology with the potential to treat patients with severe mitral regurgitation at excessive risk for surgical mitral valve surgery. Multimodal imaging of the mitral valvular complex and surrounding structures will be an important component for patient selection for TMVR. Our aim was to describe and evaluate a systematic multi-slice computed tomography (MSCT) image analysis methodology that provides measurements relevant for transcatheter mitral valve replacement. METHODS AND RESULTS A systematic step-by-step measurement methodology is described for structures of the mitral valvular complex including: the mitral valve annulus, left ventricle, left atrium, papillary muscles and left ventricular outflow tract. To evaluate reproducibility, two observers applied this methodology to a retrospective series of 49 cardiac MSCT scans in patients with heart failure and significant mitral regurgitation. For each of 25 geometrical metrics, we evaluated inter-observer difference and intra-class correlation. The inter-observer difference was below 10% and the intra-class correlation was above 0.81 for measurements of critical importance in the sizing of TMVR devices: the mitral valve annulus diameters, area, perimeter, the inter-trigone distance, and the aorto-mitral angle. CONCLUSIONS MSCT can provide measurements that are important for patient selection and sizing of TMVR devices. These measurements have excellent inter-observer reproducibility in patients with functional mitral regurgitation.
Resumo:
After attending this presentation, attendees will gain awareness of: (1) the error and uncertainty associated with the application of the Suchey-Brooks (S-B) method of age estimation of the pubic symphysis to a contemporary Australian population; (2) the implications of sexual dimorphism and bilateral asymmetry of the pubic symphysis through preliminary geometric morphometric assessment; and (3) the value of three-dimensional (3D) autopsy data acquisition for creating forensic anthropological standards. This presentation will impact the forensic science community by demonstrating that, in the absence of demographically sound skeletal collections, post-mortem autopsy data provides an exciting platform for the construction of large contemporary ‘virtual osteological libraries’ for which forensic anthropological research can be conducted on Australian individuals. More specifically, this study assesses the applicability and accuracy of the S-B method to a contemporary adult population in Queensland, Australia, and using a geometric morphometric approach, provides an insight to the age-related degeneration of the pubic symphysis. Despite the prominent use of the Suchey-Brooks (1990) method of age estimation in forensic anthropological practice, it is subject to intrinsic limitations, with reports of differential inter-population error rates between geographical locations1-4. Australian forensic anthropology is constrained by a paucity of population specific standards due to a lack of repositories of documented skeletons. Consequently, in Australian casework proceedings, standards constructed from predominately American reference samples are applied to establish a biological profile. In the global era of terrorism and natural disasters, more specific population standards are required to improve the efficiency of medico-legal death investigation in Queensland. The sample comprises multi-slice computed tomography (MSCT) scans of the pubic symphysis (slice thickness: 0.5mm, overlap: 0.1mm) on 195 individuals of caucasian ethnicity aged 15-70 years. Volume rendering reconstruction of the symphyseal surface was conducted in Amira® (v.4.1) and quantitative analyses in Rapidform® XOS. The sample was divided into ten-year age sub-sets (eg. 15-24) with a final sub-set of 65-70 years. Error with respect to the method’s assigned means were analysed on the basis of bias (directionality of error), inaccuracy (magnitude of error) and percentage correct classification of left and right symphyseal surfaces. Morphometric variables including surface area, circumference, maximum height and width of the symphyseal surface and micro-architectural assessment of cortical and trabecular bone composition were quantified using novel automated engineering software capabilities. The results of this study demonstrated correct age classification utilizing the mean and standard deviations of each phase of the S-B method of 80.02% and 86.18% in Australian males and females, respectively. Application of the S-B method resulted in positive biases and mean inaccuracies of 7.24 (±6.56) years for individuals less than 55 years of age, compared to negative biases and mean inaccuracies of 5.89 (±3.90) years for individuals greater than 55 years of age. Statistically significant differences between chronological and S-B mean age were demonstrated in 83.33% and 50% of the six age subsets in males and females, respectively. Asymmetry of the pubic symphysis was a frequent phenomenon with 53.33% of the Queensland population exhibiting statistically significant (χ2 - p<0.01) differential phase classification of left and right surfaces of the same individual. Directionality was found in bilateral asymmetry, with the right symphyseal faces being slightly older on average and providing more accurate estimates using the S-B method5. Morphometric analysis verified these findings, with the left surface exhibiting significantly greater circumference and surface area than the right (p<0.05). Morphometric analysis demonstrated an increase in maximum height and width of the surface with age, with most significant changes (p<0.05) occurring between the 25-34 and 55-64 year age subsets. These differences may be attributed to hormonal components linked to menopause in females and a reduction in testosterone in males. Micro-architectural analysis demonstrated degradation of cortical composition with age, with differential bone resorption between the medial, ventral and dorsal surfaces of the pubic symphysis. This study recommends that the S-B method be applied with caution in medico-legal death investigations of unknown skeletal remains in Queensland. Age estimation will always be accompanied by error; therefore this study demonstrates the potential for quantitative morphometric modelling of age related changes of the pubic symphysis as a tool for methodological refinement, providing a rigor and robust assessment to remove the subjectivity associated with current pelvic aging methods.
Resumo:
Objectives This study introduces and assesses the precision of a standardized protocol for anthropometric measurement of the juvenile cranium using three-dimensional surface rendered models, for implementation in forensic investigation or paleodemographic research. Materials and methods A subset of multi-slice computed tomography (MSCT) DICOM datasets (n=10) of modern Australian subadults (birth—10 years) was accessed from the “Skeletal Biology and Forensic Anthropology Virtual Osteological Database” (n>1200), obtained from retrospective clinical scans taken at Brisbane children hospitals (2009–2013). The capabilities of Geomagic Design X™ form the basis of this study; introducing standardized protocols using triangle surface mesh models to (i) ascertain linear dimensions using reference plane networks and (ii) calculate the area of complex regions of interest on the cranium. Results The protocols described in this paper demonstrate high levels of repeatability between five observers of varying anatomical expertise and software experience. Intra- and inter-observer error was indiscernible with total technical error of measurement (TEM) values ≤0.56 mm, constituting <0.33% relative error (rTEM) for linear measurements; and a TEM value of ≤12.89 mm2, equating to <1.18% (rTEM) of the total area of the anterior fontanelle and contiguous sutures. Conclusions Exploiting the advances of MSCT in routine clinical assessment, this paper assesses the application of this virtual approach to acquire highly reproducible morphometric data in a non-invasive manner for human identification and population studies in growth and development. The protocols and precision testing presented are imperative for the advancement of “virtual anthropology” into routine Australian medico-legal death investigation.
Resumo:
Firstly, we would like to thank Ms. Alison Brough and her colleagues for their positive commentary on our published work [1] and their appraisal of our utility of the “off-set plane” protocol for anthropometric analysis. The standardized protocols described in our manuscript have wide applications, ranging from forensic anthropology and paleodemographic research to clinical settings such as paediatric practice and orthopaedic surgical design. We affirm that the use of geometrically based reference tools commonly found in computer aided design (CAD) programs such as Geomagic Design X® are imperative for more automated and precise measurement protocols for quantitative skeletal analysis. Therefore we stand by our recommendation of the use of software such as Amira and Geomagic Design X® in the contexts described in our manuscript...
Resumo:
Modern imaging technologies, such as computed tomography (CT) techniques, represent a great challenge in forensic pathology. The field of forensics has experienced a rapid increase in the use of these new techniques to support investigations on critical cases, as indicated by the implementation of CT scanning by different forensic institutions worldwide. Advances in CT imaging techniques over the past few decades have finally led some authors to propose that virtual autopsy, a radiological method applied to post-mortem analysis, is a reliable alternative to traditional autopsy, at least in certain cases. The authors investigate the occurrence and the causes of errors and mistakes in diagnostic imaging applied to virtual autopsy. A case of suicide by a gunshot wound was submitted to full-body CT scanning before autopsy. We compared the first examination of sectional images with the autopsy findings and found a preliminary misdiagnosis in detecting a peritoneal lesion by gunshot wound that was due to radiologist's error. Then we discuss a new emerging issue related to the risk of diagnostic failure in virtual autopsy due to radiologist's error that is similar to what occurs in clinical radiology practice.
Resumo:
OBJECTIVES: This study sought to evaluate the diagnostic accuracy of coronary binary in-stent restenosis (ISR) with angiography using 64-slice multislice computed tomography coronary angiography (CTCA) compared with invasive coronary angiography (ICA). BACKGROUND: A noninvasive detection of ISR would result in an easier and safer way to conduct patient follow-up. METHODS: We performed CTCA in 81 patients after stent implantation, and 125 stented lesions were scanned. Two sets of images were reconstructed with different types of convolution kernels. On CTCA, neointimal proliferation was visually evaluated according to luminal contrast attenuation inside the stent. Lesions were graded as follows: grade 1, none or slight neointimal proliferation; grade 2, neointimal proliferation with no significant stenosis (<50%); grade 3, neointimal proliferation with moderate stenosis (> or =50%); and grade 4, neointimal proliferation with severe stenosis (> or =75%). Grades 3 and 4 were considered binary ISR. The diagnostic accuracy of CTCA compared with ICA was evaluated. RESULTS: By ICA, 24 ISRs were diagnosed. Sensitivity, specificity, positive predictive value, and negative predictive value were 92%, 81%, 54%, and 98% for the overall population, whereas values were 91%, 93%, 77%, and 98% when excluding unassessable segments (15 segments, 12%). For assessable segments, CTCA correctly diagnosed 20 of the 22 ISRs detected by ICA. Six lesions without ISR were overestimated as ISR by CTCA. As the grade of neointimal proliferation by CTCA increases, the median value of percent diameter stenosis increased linearly. CONCLUSIONS: Binary ISR can be excluded with high probability by CTCA, with a moderate rate of false-positive results.
Resumo:
BACKGROUND: Multislice computed tomography (MSCT) is a promising noninvasive method of detecting coronary artery disease (CAD). However, most data have been obtained in selected series of patients. The purpose of the present study was to investigate the accuracy of 64-slice MSCT (64 MSCT) in daily practice, without any patient selection. METHODS AND RESULTS: Using 64-slice MSCT coronary angiography (CTA), 69 consecutive patients, 39 (57%) of whom had previously undergone stent implantation, were evaluated. The mean heart rate during scan was 72 beats/min, scan time 13.6 s and the amount of contrast media 72 mL. The mean time span between invasive coronary angiography (ICAG) and CTA was 6 days. Significant stenosis was defined as a diameter reduction of > 50%. Of 966 segments, 884 (92%) were assessable. Compared with ICAG, the sensitivity of CTA to diagnose significant stenosis was 90%, specificity 94%, positive predictive value (PPV) 89% and negative predictive value (NPV) 95%. With regard to 58 stented lesions, the sensitivity, specificity, PPV and NPV were 93%, 96%, 87% and 98%, respectively. On the patient-based analysis, the sensitivity, specificity, PPV and NPV of CTA to detect CAD were 98%, 86%, 98% and 86%, respectively. Eighty-two (8%) segments were not assessable because of irregular rhythm, calcification or tachycardia. CONCLUSION: Sixty-four-MSCT has a high accuracy for the detection of significant CAD in an unselected patient population and therefore can be considered as a valuable noninvasive technique.
Resumo:
We aimed at assessing stent geometry and in-stent contrast attenuation with 64-slice CT in patients with various coronary stents. Twenty-nine patients (mean age 60 +/- 11 years; 24 men) with 50 stents underwent CT within 2 weeks after stent placement. Mean in-stent luminal diameter and reference vessel diameter proximal and distal to the stent were assessed with CT, and compared to quantitative coronary angiography (QCA). Stent length was also compared to the manufacturer's values. Images were reconstructed using a medium-smooth (B30f) and sharp (B46f) kernel. All 50 stents could be visualized with CT. Mean in-stent luminal diameter was systematically underestimated with CT compared to QCA (1.60 +/- 0.39 mm versus 2.49 +/- 0.45 mm; P < 0.0001), resulting in a modest correlation of QCA versus CT (r = 0.49; P < 0.0001). Stent length as given by the manufacturer was 18.2 +/- 6.2 mm, correlating well with CT (18.5 +/- 5.7 mm; r = 0.95; P < 0.0001) and QCA (17.4 +/- 5.6 mm; r = 0.87; P < 0.0001). Proximal and distal reference vessel diameters were similar with CT and QCA (P = 0.06 and P = 0.03). B46f kernel images showed higher image noise (P < 0.05) and lower in-stent CT attenuation values (P < 0.001) than images reconstructed with the B30f kernel. 64-slice CT allows measurement of coronary artery in-stent density, and significantly underestimates the true in-stent diameter compared to QCA.
Resumo:
Coronary artery disease (CAD) is the most common cause of morbidity and mortality in the United States. While Coronary Angiography (CA) is the gold standard test to investigate coronary artery disease, Prospective gated-64 Slice Computed Tomography (Prosp-64CT) is a new non-invasive technology that uses the 64Slice computed tomography (64CT) with electrocardiographic gating to investigate coronary artery disease. The aim of the current study was to investigate the role of Body Mass Index (BMI) as a factor affecting occurrence of CA after a Prosp-64CT, as well as the quality of the Prosp-64CT. Demographic and clinical characteristics of the study population were described. A secondary analysis of data on patients who underwent a Prosp-64CT for evaluation of coronary artery disease was performed. Seventy seven patients who underwent Prosp-64CT for evaluation for coronary artery disease were included. Fifteen patients were excluded because they had missing data regarding BMI, quality of the Prosp-64CT or CA. Thus, a total of 62 patients were included in the final analysis. The mean age was 56.2 years. The mean BMI was 31.3 kg/m 2. Eight (13%) patients underwent a CA within one month of Prosp-64CT. Eight (13%) patients had a poor quality Prosp-64CT. There was significant association of higher BMI as a factor for occurrence of CA post Prosp-64CT (P<0.05). There was a trend, but no statistical significance was observed for the association of being obese and occurrence of CA (P=0.06). BMI, as well as obesity, were not found to be significantly associated with poor quality of Prosp-64CT (P=0.19 and P=0.76, respectively). In conclusion, BMI was significantly associated with occurrence of CA within one month of Prosp-64CT. Thus, in patients with a higher BMI, diagnostic investigation with both tests could be avoided; rather, only a CA could be performed. However, the relationship of BMI to quality of Prosp-64CT needs to be further investigated since the sample size of the current study was small.^
Resumo:
Despite the prominent use of the pubic symphysis for age estimation in forensic anthropology, little has been documented regarding the quantitative morphological and micro-architectural changes of this surface. Specifically, utilising post-mortem computed tomography data from a large, contemporary Australian adult population, this study aimed to evaluate sexual dimorphism in the morphology and bone composition of the symphyseal surface; and temporal characterisation of the pubic symphysis in individuals of advancing age. The sample consisted of multi-slice computed tomography (MSCT) scans of the pubic symphysis(slice thickness: 0.5 mm, overlap: 0.1 mm) of 200 individuals of Caucasian ancestry aged 15–70 years, obtained in 2011. Surface rendering reconstruction of the symphyseal surface was conducted in OsiriX1 (v.4.1) and quantitative analyses in Rapidform XOSTM and OsteomeasureTM. Morphometric variables including inter-pubic distance, surface area, circumference, maximum height and width of the symphyseal surface and micro-architectural assessment of cortical and trabecular bone compositions were quantified using novel automated engineering software capabilities. The major results of this study are correlated with the macroscopic ossification and degeneration pattern of the symphyseal surface, demonstrating significant age-related changes in the morphometric and bone tissue variables between 15 and 70 years. Regardless of sex, the overall dimensions of the symphyseal surface increased with age, coupled with a decrease in bone mass in the trabecular and cortical bone compartments. Significant differences between the ventral, dorsal and medial cortical surfaces were observed, which may be correlated to bone formation activity dependent on muscle activity and ligamentous attachments. Our study demonstrates significant sexual dimorphism at this site, with males exhibiting greater surface dimensions than females. These baseline results provide a detailed insight into the changes in the structure of the pubic symphysis with ageing and sexually dimorphic features associated with the cortical and trabecular bone profiles.
Resumo:
Atlases and statistical models play important roles in the personalization and simulation of cardiac physiology. For the study of the heart, however, the construction of comprehensive atlases and spatio-temporal models is faced with a number of challenges, in particular the need to handle large and highly variable image datasets, the multi-region nature of the heart, and the presence of complex as well as small cardiovascular structures. In this paper, we present a detailed atlas and spatio-temporal statistical model of the human heart based on a large population of 3D+time multi-slice computed tomography sequences, and the framework for its construction. It uses spatial normalization based on nonrigid image registration to synthesize a population mean image and establish the spatial relationships between the mean and the subjects in the population. Temporal image registration is then applied to resolve each subject-specific cardiac motion and the resulting transformations are used to warp a surface mesh representation of the atlas to fit the images of the remaining cardiac phases in each subject. Subsequently, we demonstrate the construction of a spatio-temporal statistical model of shape such that the inter-subject and dynamic sources of variation are suitably separated. The framework is applied to a 3D+time data set of 138 subjects. The data is drawn from a variety of pathologies, which benefits its generalization to new subjects and physiological studies. The obtained level of detail and the extendability of the atlas present an advantage over most cardiac models published previously. © 1982-2012 IEEE.