994 resultados para Multi-sensor context


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of contextual information in mobile devices is receiving increasing attention in mobile and ubiquitous computing research. An important requirement for mobile development today is that devices should be able to interact with the context. In this paper we present a series of contributions regarding previous work on context-awareness. In the first place, we describe a client-server architecture that provides a mechanism for preparing target non context-aware applications in order to be delivered as context-aware applications in a semi-automatic way. Secondly, the framework used in the server to instantiate specific components for context-awareness, the Implicit Plasticity Framework, provides independence from the underlying mobile technology used in client device, as it is shown in the case studies presented. Finally, proposed infrastructure deals with the interaction among different context constraints provided by diverse sensors. All of these contributions are extensions to the infrastructure based on the Dichotomic View of plasticity, which now offers multi-purpose support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doctoral Dissertation for PhD degree in Chemical and Biological Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polarization indices presented up to now have only focused their attention on the distribution of income/wealth. However, in many circumstances income is not the only relevant dimension that might be the cause of social conflict, so it is very important to have a social polarization index able to cope with alternative dimensions. In this paper we present an axiomatic characterization of one of such indices: it has been obtained as an extension of the (income) polarization measure introduced in Duclos, Esteban and Ray (2004) to a wider domain. It turns out that the axiomatic structure introduced in that paper alone is not appropriate to obtain a fully satisfactory characterization of our measure, so additional axioms are proposed. As a byproduct, we present an alternative axiomatization of the aforementioned income polarization measure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous localization and mapping(SLAM) is a very important problem in mobile robotics. Many solutions have been proposed by different scientists during the last two decades, nevertheless few studies have considered the use of multiple sensors simultane¬ously. The solution is on combining several data sources with the aid of an Extended Kalman Filter (EKF). Two approaches are proposed. The first one is to use the ordinary EKF SLAM algorithm for each data source separately in parallel and then at the end of each step, fuse the results into one solution. Another proposed approach is the use of multiple data sources simultaneously in a single filter. The comparison of the computational com¬plexity of the two methods is also presented. The first method is almost four times faster than the second one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die thermische Verarbeitung von Lebensmitteln beeinflusst deren Qualität und ernährungsphysiologischen Eigenschaften. Im Haushalt ist die Überwachung der Temperatur innerhalb des Lebensmittels sehr schwierig. Zudem ist das Wissen über optimale Temperatur- und Zeitparameter für die verschiedenen Speisen oft unzureichend. Die optimale Steuerung der thermischen Zubereitung ist maßgeblich abhängig von der Art des Lebensmittels und der äußeren und inneren Temperatureinwirkung während des Garvorgangs. Das Ziel der Arbeiten war die Entwicklung eines automatischen Backofens, der in der Lage ist, die Art des Lebensmittels zu erkennen und die Temperatur im Inneren des Lebensmittels während des Backens zu errechnen. Die für die Temperaturberechnung benötigten Daten wurden mit mehreren Sensoren erfasst. Hierzu kam ein Infrarotthermometer, ein Infrarotabstandssensor, eine Kamera, ein Temperatursensor und ein Lambdasonde innerhalb des Ofens zum Einsatz. Ferner wurden eine Wägezelle, ein Strom- sowie Spannungs-Sensor und ein Temperatursensor außerhalb des Ofens genutzt. Die während der Aufheizphase aufgenommen Datensätze ermöglichten das Training mehrerer künstlicher neuronaler Netze, die die verschiedenen Lebensmittel in die entsprechenden Kategorien einordnen konnten, um so das optimale Backprogram auszuwählen. Zur Abschätzung der thermische Diffusivität der Nahrung, die von der Zusammensetzung (Kohlenhydrate, Fett, Protein, Wasser) abhängt, wurden mehrere künstliche neuronale Netze trainiert. Mit Ausnahme des Fettanteils der Lebensmittel konnten alle Komponenten durch verschiedene KNNs mit einem Maximum von 8 versteckten Neuronen ausreichend genau abgeschätzt werden um auf deren Grundlage die Temperatur im inneren des Lebensmittels zu berechnen. Die durchgeführte Arbeit zeigt, dass mit Hilfe verschiedenster Sensoren zur direkten beziehungsweise indirekten Messung der äußeren Eigenschaften der Lebensmittel sowie KNNs für die Kategorisierung und Abschätzung der Lebensmittelzusammensetzung die automatische Erkennung und Berechnung der inneren Temperatur von verschiedensten Lebensmitteln möglich ist.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]An accurate estimation of the number of people entering / leaving a controlled area is an interesting capability for automatic surveil- lance systems. Potential applications where this technology can be ap- plied include those related to security, safety, energy saving or fraud control. In this paper we present a novel con guration of a multi-sensor system combining both visual and range data specially suited for trou- blesome scenarios such as public transportation. The approach applies probabilistic estimation lters on raw sensor data to create intermediate level hypothesis that are later fused using a certainty-based integration stage. Promising results have been obtained in several tests performed on a realistic test bed scenario under variable lightning conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy is of primary concern in wireless sensor networks (WSNs). Low power transmission makes the wireless links unreliable, which leads to frequent topology changes. Resulting packet retransmissions aggravate the energy consumption. Beaconless routing approaches, such as opportunistic routing (OR) choose packet forwarders after data transmissions, and are promising to support dynamic features of WSNs. This paper proposes SCAD - Sensor Context-aware Adaptive Duty-cycled beaconless OR for WSNs. SCAD is a cross-layer routing solution and it brings the concept of beaconless OR into WSNs. SCAD selects packet forwarders based on multiple types of network contexts. To achieve a balance between performance and energy efficiency, SCAD adapts duty-cycles of sensors based on real-time traffic loads and energy drain rates. We implemented SCAD in TinyOS running on top of Tmote Sky sensor motes. Real-world evaluations show that SCAD outperforms other protocols in terms of both throughput and network lifetime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low quality of wireless links leads to perpetual transmission failures in lossy wireless environments. To mitigate this problem, opportunistic routing (OR) has been proposed to improve the throughput of wireless multihop ad-hoc networks by taking advantage of the broadcast nature of wireless channels. However, OR can not be directly applied to wireless sensor networks (WSNs) due to some intrinsic design features of WSNs. In this paper, we present a new OR solution for WSNs with suitable adaptations to their characteristics. Our protocol, called SCAD-Sensor Context-aware Adaptive Duty-cycled beaconless opportunistic routing protocol is a cross-layer routing approach and it selects packet forwarders based on multiple sensor context information. To reach a balance between performance and energy-efficiency, SCAD adapts the duty-cycles of sensors according to real-time traffic loads and energy drain rates. We compare SCAD against other protocols through extensive simulations. Evaluation results show that SCAD outperforms other protocols in highly dynamic scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present and examine a multi-sensor global compilation of mid-Holocene (MH) sea surface temperatures (SST), based on Mg/Ca and alkenone palaeothermometry and reconstructions obtained using planktonic foraminifera and organic-walled dinoflagellate cyst census counts. We assess the uncertainties originating from using different methodologies and evaluate the potential of MH SST reconstructions as a benchmark for climate-model simulations. The comparison between different analytical approaches (time frame, baseline climate) shows the choice of time window for the MH has a negligible effect on the reconstructed SST pattern, but the choice of baseline climate affects both the magnitude and spatial pattern of the reconstructed SSTs. Comparison of the SST reconstructions made using different sensors shows significant discrepancies at a regional scale, with uncertainties often exceeding the reconstructed SST anomaly. Apparent patterns in SST may largely be a reflection of the use of different sensors in different regions. Overall, the uncertainties associated with the SST reconstructions are generally larger than the MH anomalies. Thus, the SST data currently available cannot serve as a target for benchmarking model simulations.

Relevância:

100.00% 100.00%

Publicador: