997 resultados para Multi-sensor
Resumo:
Surveillance and tracking systems typically use a single colour modality for their input. These systems work well in controlled conditions but often fail with low lighting, shadowing, smoke, dust, unstable backgrounds or when the foreground object is of similar colouring to the background. With advances in technology and manufacturing techniques, sensors that allow us to see into the thermal infrared spectrum are becoming more affordable. By using modalities from both the visible and thermal infrared spectra, we are able to obtain more information from a scene and overcome the problems associated with using visible light only for surveillance and tracking. Thermal images are not affected by lighting or shadowing and are not overtly affected by smoke, dust or unstable backgrounds. We propose and evaluate three approaches for fusing visual and thermal images for person tracking. We also propose a modified condensation filter to track and aid in the fusion of the modalities. We compare the proposed fusion schemes with using the visual and thermal domains on their own, and demonstrate that significant improvements can be achieved by using multiple modalities.
Resumo:
This paper presents a practical framework to synthesize multi-sensor navigation information for localization of a rotary-wing unmanned aerial vehicle (RUAV) and estimation of unknown ship positions when the RUAV approaches the landing deck. The estimation performance of the visual tracking sensor can also be improved through integrated navigation. Three different sensors (inertial navigation, Global Positioning System, and visual tracking sensor) are utilized complementarily to perform the navigation tasks for the purpose of an automatic landing. An extended Kalman filter (EKF) is developed to fuse data from various navigation sensors to provide the reliable navigation information. The performance of the fusion algorithm has been evaluated using real ship motion data. Simulation results suggest that the proposed method can be used to construct a practical navigation system for a UAV-ship landing system.
Resumo:
In this paper we present a method for autonomously tuning the threshold between learning and recognizing a place in the world, based on both how the rodent brain is thought to process and calibrate multisensory data and the pivoting movement behaviour that rodents perform in doing so. The approach makes no assumptions about the number and type of sensors, the robot platform, or the environment, relying only on the ability of a robot to perform two revolutions on the spot. In addition, it self-assesses the quality of the tuning process in order to identify situations in which tuning may have failed. We demonstrate the autonomous movement-driven threshold tuning on a Pioneer 3DX robot in eight locations spread over an office environment and a building car park, and then evaluate the mapping capability of the system on journeys through these environments. The system is able to pick a place recognition threshold that enables successful environment mapping in six of the eight locations while also autonomously flagging the tuning failure in the remaining two locations. We discuss how the method, in combination with parallel work on autonomous weighting of individual sensors, moves the parameter dependent RatSLAM system significantly closer to sensor, platform and environment agnostic operation.
Resumo:
This paper presents large, accurately calibrated and time-synchronised datasets, gathered outdoors in controlled environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. It discusses how the data collection process was designed, the conditions in which these datasets have been gathered, and some possible outcomes of their exploitation, in particular for the evaluation of performance of sensors and perception algorithms for UGVs.
Resumo:
This document describes large, accurately calibrated and time-synchronised datasets, gathered in controlled environmental conditions, using an unmanned ground vehicle equipped with a wide variety of sensors. These sensors include: multiple laser scanners, a millimetre wave radar scanner, a colour camera and an infra-red camera. Full details of the sensors are given, as well as the calibration parameters needed to locate them with respect to each other and to the platform. This report also specifies the format and content of the data, and the conditions in which the data have been gathered. The data collection was made in two different situations of the vehicle: static and dynamic. The static tests consisted of sensing a fixed ’reference’ terrain, containing simple known objects, from a motionless vehicle. For the dynamic tests, data were acquired from a moving vehicle in various environments, mainly rural, including an open area, a semi-urban zone and a natural area with different types of vegetation. For both categories, data have been gathered in controlled environmental conditions, which included the presence of dust, smoke and rain. Most of the environments involved were static, except for a few specific datasets which involve the presence of a walking pedestrian. Finally, this document presents illustrations of the effects of adverse environmental conditions on sensor data, as a first step towards reliability and integrity in autonomous perceptual systems.
Resumo:
In this paper we present large, accurately calibrated and time-synchronized data sets, gathered outdoors in controlled and variable environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. These include four 2D laser scanners, a radar scanner, a color camera and an infrared camera. It provides a full description of the system used for data collection and the types of environments and conditions in which these data sets have been gathered, which include the presence of airborne dust, smoke and rain.
Resumo:
We address the problem of the rangefinder-based avoidance of unforeseen static obstacles during a visual navigation task. We extend previous strategies which are efficient in most cases but remain still hampered by some drawbacks (e.g., risks of collisions or of local minima in some particular cases, etc.). The key idea is to complete the control strategy by adding a controller providing the robot some anticipative skills to guarantee non collision and by defining more general transition conditions to deal with local minima. Simulation results show the proposed strategy efficiency.
Resumo:
Emissions of gases and particles from sea-faring ships have been shown to impact on the atmospheric chemistry and climate. To efficiently monitor and report these emissions found from a ship’s plume, the concept of using a multi-rotor or UAV to hover inside or near the exhaust of the ship to actively record the data in real time is being developed. However, for the required sensors obtain the data; their sensors must face into the airflow of the ships plume. This report presents an approach to have sensors able to read in the chemicals and particles emitted from the ship without affecting the flight dynamics of the multi-rotor UAV by building a sealed chamber in which a pump can take in the surrounding air (outside the downwash effect of the multi-rotor) where the sensors are placed and can analyse the gases safely. Results show that the system is small, lightweight and air-sealed and ready for flight test.
Resumo:
Fusion of multi-sensor imaging data enables a synergetic interpretation of complementary information obtained by sensors of different spectral ranges. Multi-sensor data of diverse spectral, spatial and temporal resolutions require advanced numerical techniques for analysis and interpretation. This paper reviews ten advanced pixel based image fusion techniques – Component substitution (COS), Local mean and variance matching, Modified IHS (Intensity Hue Saturation), Fast Fourier Transformed-enhanced IHS, Laplacian Pyramid, Local regression, Smoothing filter (SF), Sparkle, SVHC and Synthetic Variable Ratio. The above techniques were tested on IKONOS data (Panchromatic band at 1 m spatial resolution and Multispectral 4 bands at 4 m spatial resolution). Evaluation of the fused results through various accuracy measures, revealed that SF and COS methods produce images closest to corresponding multi-sensor would observe at the highest resolution level (1 m).
Resumo:
This paper investigates a new approach for point matching in multi-sensor satellite images. The feature points are matched using multi-objective optimization (angle criterion and distance condition) based on Genetic Algorithm (GA). This optimization process is more efficient as it considers both the angle criterion and distance condition to incorporate multi-objective switching in the fitness function. This optimization process helps in matching three corresponding corner points detected in the reference and sensed image and thereby using the affine transformation, the sensed image is aligned with the reference image. From the results obtained, the performance of the image registration is evaluated and it is concluded that the proposed approach is efficient.
Resumo:
This paper investigates a novel approach for point matching of multi-sensor satellite imagery. The feature (corner) points extracted using an improved version of the Harris Corner Detector (HCD) is matched using multi-objective optimization based on a Genetic Algorithm (GA). An objective switching approach to optimization that incorporates an angle criterion, distance condition and point matching condition in the multi-objective fitness function is applied to match corresponding corner-points between the reference image and the sensed image. The matched points obtained in this way are used to align the sensed image with a reference image by applying an affine transformation. From the results obtained, the performance of the image registration is evaluated and compared with existing methods, namely Nearest Neighbor-Random SAmple Consensus (NN-Ran-SAC) and multi-objective Discrete Particle Swarm Optimization (DPSO). From the performed experiments it can be concluded that the proposed approach is an accurate method for registration of multi-sensor satellite imagery. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
CLI .NET 4.0 research prototype platform coded in C# and Windows Presentation Foundation (WPF)