899 resultados para Multi-scale Fractal Dimension
Resumo:
Shape provides one of the most relevant information about an object. This makes shape one of the most important visual attributes used to characterize objects. This paper introduces a novel approach for shape characterization, which combines modeling shape into a complex network and the analysis of its complexity in a dynamic evolution context. Descriptors computed through this approach show to be efficient in shape characterization, incorporating many characteristics, such as scale and rotation invariant. Experiments using two different shape databases (an artificial shapes database and a leaf shape database) are presented in order to evaluate the method. and its results are compared to traditional shape analysis methods found in literature. (C) 2009 Published by Elsevier B.V.
Resumo:
This paper presents the study of computational methods applied to histological texture analysis in order to identify plant species, a very difficult task due to the great similarity among some species and presence of irregularities in a given species. Experiments were performed considering 300 ×300 texture windows extracted from adaxial surface epidermis from eight species. Different texture methods were evaluated using Linear Discriminant Analysis (LDA). Results showed that methods based on complexity analysis perform a better texture discrimination, so conducting to a more accurate identification of plant species. © 2009 Springer Berlin Heidelberg.
Resumo:
This paper presents a method for the quantification of cellular rejection in endomyocardial biopsies of patients submitted to heart transplant. The model is based on automatic multilevel thresholding, which employs histogram quantification techniques, histogram slope percentage analysis and the calculation of maximum entropy. The structures were quantified with the aid of the multi-scale fractal dimension and lacunarity for the identification of behavior patterns in myocardial cellular rejection in order to determine the most adequate treatment for each case.
Resumo:
Comentaris referits a l'article següent: K. J. Vinoy, J. K. Abraham, and V. K. Varadan, “On the relationshipbetween fractal dimension and the performance of multi-resonant dipoleantennas using Koch curves,” IEEE Transactions on Antennas and Propagation, 2003, vol. 51, p. 2296–2303.
Resumo:
The present work shows a novel fractal dimension method for shape analysis. The proposed technique extracts descriptors from a shape by applying a multi-scale approach to the calculus of the fractal dimension. The fractal dimension is estimated by applying the curvature scale-space technique to the original shape. By applying a multi-scale transform to the calculus, we obtain a set of descriptors which is capable of describing the shape under investigation with high precision. We validate the computed descriptors in a classification process. The results demonstrate that the novel technique provides highly reliable descriptors, confirming the efficiency of the proposed method. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757226]
Resumo:
In this study we propose an application of the MuSIASEM approach which is used to provide an integrated analysis of Laos across different scales. With the term “integrated analysis across scales” we mean the generation of a series of packages of quantitative indicators, characterizing the performance of the socioeconomic activities performed in Laos when considering: (i) different hierarchical levels of organization (farming systems described at the level of household, rural villages, regions of Laos, the whole country level); and (ii) different dimensions of analysis (economic dimension, social dimension, ecological dimension, technical dimension). What is relevant in this application is that the information carried out by these different packages of indicators is integrated in a system of accounting which establishes interlinkages across these indicators. This is a essential feature to study sustainability trade-offs and to build more robust scenarios of possible changes. The multi-scale integrated representation presented in this study is based on secondary data (gathered in a three year EU project – SEAtrans and integrated by other available statistical sources) and it is integrated in GIS, when dealing with the spatial representation of Laos. However, even if we use data referring to Laos, the goal of this study is not that of providing useful information about a practical policy issue of Laos, but rather, to illustrate the possibility of using a multipurpose grammar to produce an integrated set of sustainability indicators at three different levels: (i) local; (ii) meso; (iii) macro level. The technical issue addressed is the simultaneous adoption of two multi-level matrices – one referring to a characterization of human activity over a set of different categories, and another referring to a characterization of land uses over the same set of categories. In this way, it becomes possible to explain the characteristics of Laos (an integrated set of indicators defining the performance of the whole country) in relation to the characteristics of the rural Laos and urban Laos. The characteristics of rural Laos, can be explained using the characteristics of three regions defined within Laos (Northern Laos, Central Laos and Southern Laos), which in turn can be defined (using an analogous package of indicators), starting from the characteristics of three main typologies of farming systems found in the regions.
Resumo:
This study presents a first attempt to extend the “Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM)” approach to a spatial dimension using GIS techniques in the Metropolitan area of Barcelona. We use a combination of census and commercial databases along with a detailed land cover map to create a layer of Common Geographic Units that we populate with the local values of human time spent in different activities according to MuSIASEM hierarchical typology. In this way, we mapped the hours of available human time, in regards to the working hours spent in different locations, putting in evidence the gradients in spatial density between the residential location of workers (generating the work supply) and the places where the working hours are actually taking place. We found a strong three-modal pattern of clumps of areas with different combinations of values of time spent on household activities and on paid work. We also measured and mapped spatial segregation between these two activities and put forward the conjecture that this segregation increases with higher energy throughput, as the size of the functional units must be able to cope with the flow of exosomatic energy. Finally, we discuss the effectiveness of the approach by comparing our geographic representation of exosomatic throughput to the one issued from conventional methods.
Resumo:
Assessing the ways in which rural agrarian areas provide Cultural Ecosystem Services (CES) is proving difficult to achieve. This research has developed an innovative methodological approach named as Multi Scale Indicator Framework (MSIF) for capturing the CES embedded into the rural agrarian areas. This framework reconciles a literature review with a trans-disciplinary participatory workshop. Both of these sources reveal that societal preferences diverge upon judgemental criteria which in turn relate to different visual concepts that can be drawn from analysing attributes, elements, features and characteristics of rural areas. We contend that it is now possible to list a group of possible multi scale indicators for stewardship, diversity and aesthetics. These results might also be of use for improving any existing European indicators frameworks by also including CES. This research carries major implications for policy at different levels of governance, as it makes possible to target and monitor policy instruments to the physical rural settings so that cultural dimensions are adequately considered. There is still work to be developed on regional specific values and thresholds for each criteria and its indicator set. In practical terms, by developing the conceptual design within a common framework as described in this paper, a considerable step forward towards the inclusion of the cultural dimension in European wide assessments can be made.
Resumo:
Fractal theory presents a large number of applications to image and signal analysis. Although the fractal dimension can be used as an image object descriptor, a multiscale approach, such as multiscale fractal dimension (MFD), increases the amount of information extracted from an object. MFD provides a curve which describes object complexity along the scale. However, this curve presents much redundant information, which could be discarded without loss in performance. Thus, it is necessary the use of a descriptor technique to analyze this curve and also to reduce the dimensionality of these data by selecting its meaningful descriptors. This paper shows a comparative study among different techniques for MFD descriptors generation. It compares the use of well-known and state-of-the-art descriptors, such as Fourier, Wavelet, Polynomial Approximation (PA), Functional Data Analysis (FDA), Principal Component Analysis (PCA), Symbolic Aggregate Approximation (SAX), kernel PCA, Independent Component Analysis (ICA), geometrical and statistical features. The descriptors are evaluated in a classification experiment using Linear Discriminant Analysis over the descriptors computed from MFD curves from two data sets: generic shapes and rotated fish contours. Results indicate that PCA, FDA, PA and Wavelet Approximation provide the best MFD descriptors for recognition and classification tasks. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This work proposes a novel texture descriptor based on fractal theory. The method is based on the Bouligand- Minkowski descriptors. We decompose the original image recursively into four equal parts. In each recursion step, we estimate the average and the deviation of the Bouligand-Minkowski descriptors computed over each part. Thus, we extract entropy features from both average and deviation. The proposed descriptors are provided by concatenating such measures. The method is tested in a classification experiment under well known datasets, that is, Brodatz and Vistex. The results demonstrate that the novel technique achieves better results than classical and state-of-the-art texture descriptors, such as Local Binary Patterns, Gabor-wavelets and co-occurrence matrix.
Resumo:
Stylolites are rough paired surfaces, indicative of localized stress-induced dissolution under a non-hydrostatic state of stress, separated by a clay parting which is believed to be the residuum of the dissolved rock. These structures are the most frequent deformation pattern in monomineralic rocks and thus provide important information about low temperature deformation and mass transfer. The intriguing roughness of stylolites can be used to assess amount of volume loss and paleo-stress directions, and to infer the destabilizing processes during pressure solution. But there is little agreement on how stylolites form and why these localized pressure solution patterns develop their characteristic roughness.rnNatural bedding parallel and vertical stylolites were studied in this work to obtain a quantitative description of the stylolite roughness and understand the governing processes during their formation. Adapting scaling approaches based on fractal principles it is demonstrated that stylolites show two self affine scaling regimes with roughness exponents of 1.1 and 0.5 for small and large length scales separated by a crossover length at the millimeter scale. Analysis of stylolites from various depths proved that this crossover length is a function of the stress field during formation, as analytically predicted. For bedding parallel stylolites the crossover length is a function of the normal stress on the interface, but vertical stylolites show a clear in-plane anisotropy of the crossover length owing to the fact that the in-plane stresses (σ2 and σ3) are dissimilar. Therefore stylolite roughness contains a signature of the stress field during formation.rnTo address the origin of stylolite roughness a combined microstructural (SEM/EBSD) and numerical approach is employed. Microstructural investigations of natural stylolites in limestones reveal that heterogeneities initially present in the host rock (clay particles, quartz grains) are responsible for the formation of the distinctive stylolite roughness. A two-dimensional numerical model, i.e. a discrete linear elastic lattice spring model, is used to investigate the roughness evolving from an initially flat fluid filled interface induced by heterogeneities in the matrix. This model generates rough interfaces with the same scaling properties as natural stylolites. Furthermore two coinciding crossover phenomena in space and in time exist that separate length and timescales for which the roughening is either balanced by surface or elastic energies. The roughness and growth exponents are independent of the size, amount and the dissolution rate of the heterogeneities. This allows to conclude that the location of asperities is determined by a polimict multi-scale quenched noise, while the roughening process is governed by inherent processes i.e. the transition from a surface to an elastic energy dominated regime.rn
Resumo:
Understanding and predicting patterns of distribution and abundance of marine resources is important for con- servation and management purposes in small-scale artisanal fisheries and industrial fisheries worldwide. The goose barnacle (Pollicipes pollicipes) is an important shellfish resource and its distribution is closely related to wave exposure at different spatial scales. We modelled the abundance (percent coverage) of P. pollicipes as a function of a simple wave exposure index based on fetch estimates from digitized coastlines at different spatial scales. The model accounted for 47.5% of the explained deviance and indicated that barnacle abundance increases non-linearly with wave exposure at both the smallest (metres) and largest (kilometres) spatial scales considered in this study. Distribution maps were predicted for the study region in SW Portugal. Our study suggests that the relationship between fetch-based exposure indices and P. pollicipes percent cover may be used as a simple tool for providing stakeholders with information on barnacle distribution patterns. This information may improve assessment of harvesting grounds and the dimension of exploitable areas, aiding management plans and support- ing decision making on conservation, harvesting pressure and surveillance strategies for this highly appreciated and socio- economically important marine resource.
Resumo:
Assessing the ways in which rural agrarian areas provide Cultural Ecosystem Services (CES) is proving difficult to achieve. This research has developed an innovative methodological approach named as Multi Scale Indicator Framework (MSIF) for capturing the CES embedded into the rural agrarian areas. This framework reconciles a literature review with a transdisciplinary participatory workshop. Both of these sources reveal that societal preferences diverge upon judgemental criteria which in turn relate to different visual concepts that can be drawn from analyzing attributes, elements, features and characteristics of rural areas. We contend that it is now possible to list a group of possible multi scale indicators for stewardship, diversity and aesthetics. These results might also be of use for improving any existing European indicators frameworks by also including CES. This research carries major implications for policy at different levels of governance, as it makes possible to target and monitor policy instruments to the physical rural settings so that cultural dimensions are adequately considered. There is still work to be developed on regional specific values and thresholds for each criteria and its indicator set. In practical terms, by developing the conceptual design within a common framework as described in this paper, a considerable step forward toward the inclusion of the cultural dimension in European wide assessments can be made
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
A numeric model has been proposed to investigate the mechanical and electrical properties of a polymeric/carbon nanotube (CNT) composite material subjected to a deformation force. The reinforcing phase affects the behavior of the polymeric matrix and depends on the nanofiber aspect ratio and preferential orientation. The simulations show that the mechanical behavior of a computer generated material (CGM) depends on fiber length and initial orientation in the polymeric matrix. It is also shown how the conductivity of the polymer/CNT composite can be calculated for each time step of applied stress, effectively providing the ability to simulate and predict strain-dependent electrical behavior of CNT nanocomposites.